-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
22 changed files
with
3,879 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
import numpy as np | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
import torch.utils.data | ||
from torch import FloatTensor as FT | ||
from tqdm import tqdm | ||
import matplotlib | ||
import matplotlib.pyplot as plt | ||
from matplotlib.colors import ListedColormap | ||
from sklearn.datasets import make_moons | ||
|
||
|
||
# training for 10 different seeds and then averaging over all runs | ||
seeds = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] | ||
# seeds = [0] | ||
# A two-layer neural netowrk with the following number of hidden units | ||
hidden_dim = 500 | ||
n_samples = 300 | ||
epochs = 1000 | ||
|
||
experiments = [ | ||
{'name': 'Delta = -0.1', | ||
'dataset': lambda seed: two_moons_dataset(seed, margin=-0.1)}, | ||
{'name': 'Delta = +0.1', | ||
'dataset': lambda seed: two_moons_dataset(seed, margin=+0.1)},] | ||
|
||
|
||
# Network architecture | ||
class Net(nn.Module): | ||
def __init__(self, hidden_dim, exp=None): | ||
super(Net, self).__init__() | ||
|
||
if 'deeper' in exp['name']: | ||
self.fc1 = nn.Linear(2, hidden_dim) | ||
self.fc2 = nn.Linear(hidden_dim, hidden_dim) | ||
self.fc3 = nn.Linear(hidden_dim, hidden_dim) | ||
self.fc4 = nn.Linear(hidden_dim, hidden_dim) | ||
self.fc5 = nn.Linear(hidden_dim, 1) | ||
|
||
else: | ||
if 'larger' in exp['name']: | ||
hidden_dim = hidden_dim * 10 | ||
elif 'smaller' in exp['name']: | ||
hidden_dim = hidden_dim // 10 | ||
|
||
self.fc1 = nn.Linear(2, hidden_dim) | ||
self.fc2 = nn.Linear(hidden_dim, 1) | ||
if 'dropout' in exp['name']: | ||
self.dropout_layer = nn.Dropout(p=0.7) | ||
elif 'batchnorm' in exp['name']: | ||
self.bn = nn.BatchNorm1d(hidden_dim) | ||
|
||
def forward(self, x): | ||
if 'deeper' in exp['name']: | ||
return self.fc5(F.relu(self.fc4(F.relu(self.fc3(F.relu(self.fc2(F.relu(self.fc1(x))))))))) | ||
else: | ||
if 'dropout' in exp['name']: | ||
return self.fc2(F.relu(self.dropout_layer(self.fc1(x)))) | ||
elif 'batchnorm' in exp['name']: | ||
return self.fc2(F.relu(self.bn(self.fc1(x)))) | ||
else: | ||
return self.fc2(F.relu(self.fc1(x))) | ||
|
||
|
||
def two_moons_dataset(seed, margin=0.0, rotation=0.0): | ||
X, y = make_moons(n_samples=n_samples, noise=0.1, random_state=seed) | ||
y_pm1 = (2.0 * y - 1.0)[:, None] | ||
move_along_x = 0.5 * np.ones((n_samples, 1)) | ||
move_along_y = y_pm1 * 0.3 | ||
X = X - np.concatenate([move_along_x, move_along_y], 1) | ||
X[:, 1] = X[:, 1] - X[:, 1].mean() | ||
alter_sign = np.sign(-X[:, 1] * y_pm1[:, 0]) | ||
X[:, 1] = X[:, 1] * alter_sign | ||
X[:, 1] = X[:, 1] - y_pm1[:, 0] * margin | ||
# Rotate data by 90 degrees | ||
X = X[:, ::-1].copy() | ||
|
||
if rotation != 0.0: | ||
theta = np.radians(rotation) | ||
c, s = np.cos(theta), np.sin(theta) | ||
R = np.array(((c, -s), (s, c))) | ||
X = np.dot(X, R) | ||
return X, y | ||
|
||
# An n by n grid for the heatmap | ||
n = 100 | ||
d1_min = -2 | ||
d1_max = 2 | ||
d2_min = -2 | ||
d2_max = 2 | ||
d1, d2 = torch.meshgrid([ | ||
torch.linspace(d1_min, d1_max, n), | ||
torch.linspace(d2_min, d2_max, n)]) | ||
heatmap_plane = torch.stack((d1.flatten(), d2.flatten()), dim=1) | ||
heatmap_avg = np.zeros((heatmap_plane.shape[0], len(experiments))) | ||
|
||
for seed in seeds: | ||
print('Seed: ' + str(seed)) | ||
|
||
np.random.seed(seed) | ||
torch.manual_seed(seed) | ||
np.random.seed(seed) | ||
|
||
for exp_idx, exp in enumerate(experiments): | ||
print('Experiment: ' + exp['name']) | ||
X, y = exp['dataset'](seed) | ||
X, y = FT(X), FT(2.0 * y - 1.0) | ||
|
||
net = Net(hidden_dim, exp) | ||
if 'weight_decay' in exp['name']: | ||
optimizer = optim.SGD(net.parameters(), lr=1e-2, momentum=0.9, weight_decay=exp['coef']) | ||
elif 'adam' in exp['name']: | ||
optimizer = optim.Adam(net.parameters(), lr=exp['lr']) | ||
else: | ||
optimizer = optim.SGD(net.parameters(), lr=1e-2, momentum=0.9) | ||
|
||
if 'longer' in exp['name']: | ||
epochs_ = 10 * epochs | ||
else: | ||
epochs_ = epochs | ||
for epoch in tqdm(range(epochs_)): | ||
y_hat = net(X)[:, 0] | ||
loss = torch.log(1.0 + torch.exp(-y_hat * y)).mean() | ||
if exp['name'] == 'SD': | ||
loss += exp['sd_coef'] * (y_hat ** 2).mean() | ||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
print(loss.item()) | ||
|
||
# Average heatmaps over seeds | ||
net.eval() | ||
heatmap_avg[:, exp_idx] += net(heatmap_plane).data.cpu().numpy()[:, 0] / len(seeds) | ||
|
||
# Plotting | ||
matplotlib.rcParams['contour.negative_linestyle'] = 'solid' | ||
cm = ListedColormap(['#C82506', '#0365C0']) | ||
figure = plt.figure(figsize=((len(experiments) // 2) * 2.7, 6)) | ||
hmp_x = heatmap_plane[:, 0].data.numpy().reshape(n, n) | ||
hmp_y = heatmap_plane[:, 1].data.numpy().reshape(n, n) | ||
|
||
for exp_idx, exp in enumerate(experiments): | ||
ax = plt.subplot(2, len(experiments) // 2, exp_idx + 1) | ||
# plot only one of the seeds | ||
X, y = exp['dataset'](seeds[0]) | ||
hma = heatmap_avg[:, exp_idx].reshape(n, n) | ||
ax.contourf(hmp_x, hmp_y, hma, 10, cmap=plt.cm.RdBu, alpha=.8) | ||
ax.contour(hmp_x, hmp_y, hma, 10, antialiased=True, linewidths=0.2, colors='k') | ||
ax.contour(hmp_x, hmp_y, hma, 0, antialiased=True, linewidths=1.0, colors='k') | ||
ax.scatter(X[:, 0], X[:, 1], c=y, cmap=cm, edgecolors='k', s=18) | ||
ax.axhline(y=0, ls='--', lw=0.7, color='k', alpha=0.5) | ||
ax.axvline(x=0, ls='--', lw=0.7, color='k', alpha=0.5) | ||
ax.set_title(exp['name']) | ||
ax.xaxis.set_major_locator(plt.NullLocator()) | ||
ax.yaxis.set_major_locator(plt.NullLocator()) | ||
|
||
plt.tight_layout() | ||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,169 @@ | ||
import numpy as np | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
import torch.utils.data | ||
from torch import FloatTensor as FT | ||
from tqdm import tqdm | ||
from nngeometry.generator.jacobian import Jacobian | ||
from nngeometry.layercollection import LayerCollection | ||
from torch.utils.data import TensorDataset, DataLoader | ||
import matplotlib | ||
import matplotlib.pyplot as plt | ||
from matplotlib.colors import ListedColormap | ||
from sklearn.datasets import make_moons | ||
|
||
|
||
# training for 10 different seeds and then averaging over all runs | ||
seeds = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] | ||
# A two-layer neural netowrk with the following number of hidden units | ||
hidden_dim = 500 | ||
n_samples = 300 | ||
epochs = 10000 | ||
|
||
experiments = [ | ||
{'name': 'margin=-0.1', | ||
'dataset': lambda seed: two_moons_dataset(seed, margin=-0.1), | ||
'sp_coef': 0.0, | ||
'ls': ':'}, # ls = line style for plotting | ||
{'name': 'margin=+0.1', | ||
'dataset': lambda seed: two_moons_dataset(seed, margin=+0.1), | ||
'sp_coef': 0.0, | ||
'ls': '--'}, | ||
{'name': 'margin=+0.1 with SP', | ||
'dataset': lambda seed: two_moons_dataset(seed, margin=+0.1), | ||
'sp_coef': 0.003, | ||
'ls': '-'} | ||
] | ||
|
||
|
||
# Network architecture | ||
class Net(nn.Module): | ||
def __init__(self, | ||
hidden_dim): | ||
super(Net, self).__init__() | ||
|
||
self.fc1 = nn.Linear(2, hidden_dim) | ||
self.fc2 = nn.Linear(hidden_dim, 1) | ||
|
||
def forward(self, x): | ||
return self.fc2(F.relu(self.fc1(x))) | ||
|
||
|
||
def two_moons_dataset(seed, margin=0.0): | ||
X, y = make_moons(n_samples=n_samples, noise=0.1, random_state=seed) | ||
y_pm1 = (2.0 * y - 1.0)[:, None] | ||
move_along_x = 0.5 * np.ones((n_samples, 1)) | ||
move_along_y = y_pm1 * 0.3 | ||
X = X - np.concatenate([move_along_x, move_along_y], 1) | ||
X[:, 1] = X[:, 1] - X[:, 1].mean() | ||
alter_sign = np.sign(-X[:, 1] * y_pm1[:, 0]) | ||
X[:, 1] = X[:, 1] * alter_sign | ||
X[:, 1] = X[:, 1] - y_pm1[:, 0] * margin | ||
# Rotate data by 90 degrees | ||
X = X[:, ::-1].copy() | ||
return X, y | ||
|
||
|
||
def NTK_Left_SV(net, X, y): | ||
def output_fn(input, target): | ||
# input = input.to('cuda') | ||
return net(input) | ||
|
||
layer_collection = LayerCollection.from_model(net) | ||
layer_collection.numel() | ||
batch = TensorDataset(X, y) | ||
batch_loader = DataLoader(batch) | ||
generator = Jacobian(layer_collection=layer_collection, | ||
model=net, | ||
loader=batch_loader, | ||
function=output_fn, | ||
n_output=1) | ||
jac = generator.get_jacobian()[0] | ||
K = torch.mm(jac, jac.transpose(0, 1)) | ||
U, S, V = torch.svd(K, some=False) | ||
return U | ||
|
||
# An n by n grid for the heatmap | ||
n = 100 | ||
d1_min = -2 | ||
d1_max = 2 | ||
d2_min = -2 | ||
d2_max = 2 | ||
d1, d2 = torch.meshgrid([ | ||
torch.linspace(d1_min, d1_max, n), | ||
torch.linspace(d2_min, d2_max, n)]) | ||
heatmap_plane = torch.stack((d1.flatten(), d2.flatten()), dim=1) | ||
heatmap_avg = np.zeros((heatmap_plane.shape[0], len(experiments))) | ||
|
||
# Z is the latent feature | ||
Zs = np.zeros((epochs, len(experiments), len(seeds), n_samples)) | ||
|
||
|
||
for seed in seeds: | ||
print('Seed: ' + str(seed)) | ||
|
||
np.random.seed(seed) | ||
torch.manual_seed(seed) | ||
np.random.seed(seed) | ||
|
||
for exp_idx, exp in enumerate(experiments): | ||
print('Experiment: ' + exp['name']) | ||
X, y = exp['dataset'](seed) | ||
X, y = FT(X), FT(2.0 * y - 1.0) | ||
|
||
net = Net(hidden_dim) | ||
optimizer = optim.SGD(net.parameters(), lr=1e-2, momentum=0.9, weight_decay=0.0002) | ||
U = NTK_Left_SV(net, X, y) | ||
|
||
for epoch in tqdm(range(epochs)): | ||
y_hat = net(X)[:, 0] | ||
loss = torch.log(1.0 + torch.exp(-y_hat * y)).mean() | ||
loss += exp['sp_coef'] * (y_hat ** 2).mean() | ||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
Z = torch.mm(y_hat.unsqueeze(0), U)[0].data.cpu().numpy() | ||
Zs[epoch, exp_idx, seed] = np.abs(Z) | ||
print(loss.item()) | ||
|
||
# Average heatmaps over seeds | ||
heatmap_avg[:, exp_idx] += net(heatmap_plane).data.cpu().numpy()[:, 0] / len(seeds) | ||
|
||
# Average over seeds | ||
Zs_mean = Zs.mean(axis=2) | ||
Zs_std = Zs.std(axis=2) | ||
|
||
# Plotting | ||
matplotlib.rcParams['contour.negative_linestyle'] = 'solid' | ||
cm = ListedColormap(['#C82506', '#0365C0']) | ||
figure = plt.figure(figsize=((len(experiments) + 1) * 2.7, 3)) | ||
hmp_x = heatmap_plane[:, 0].data.numpy().reshape(n, n) | ||
hmp_y = heatmap_plane[:, 1].data.numpy().reshape(n, n) | ||
|
||
ax_last = plt.subplot(1, len(experiments) + 1, len(experiments) + 1) | ||
for exp_idx, exp in enumerate(experiments): | ||
ax = plt.subplot(1, len(experiments) + 1, exp_idx + 1) | ||
# plot only one of the seeds | ||
X, y = exp['dataset'](seeds[0]) | ||
hma = heatmap_avg[:, exp_idx].reshape(n, n) | ||
ax.contourf(hmp_x, hmp_y, hma, 10, cmap=plt.cm.RdBu, alpha=.8) | ||
ax.contour(hmp_x, hmp_y, hma, 10, antialiased=True, linewidths=0.2, colors='k') | ||
ax.contour(hmp_x, hmp_y, hma, 0, antialiased=True, linewidths=1.0, colors='k') | ||
ax.scatter(X[:, 0], X[:, 1], c=y, cmap=cm, edgecolors='k', s=18) | ||
ax.axhline(y=0, ls='--', lw=0.7, color='k', alpha=0.5) | ||
ax.axvline(x=0, ls='--', lw=0.7, color='k', alpha=0.5) | ||
ax.xaxis.set_major_locator(plt.NullLocator()) | ||
ax.yaxis.set_major_locator(plt.NullLocator()) | ||
|
||
# We only plot Zs at index 1 and 6 out of n_samples | ||
ax_last.plot(Zs_mean[:, exp_idx, 1], color='#2D7F58', ls=exp['ls'], lw=1.5) | ||
ax_last.plot(Zs_mean[:, exp_idx, 6], color='#FA7F05', ls=exp['ls'], lw=1.5) | ||
ax_last.set_facecolor('#F9F9F9') | ||
# ax_last.plot() | ||
ax_last.grid(b=True, which='major', linestyle='--', lw=0.7, color='k', alpha=0.3) | ||
ax_last.set_yticklabels([]) | ||
|
||
plt.tight_layout() | ||
plt.show() |
Oops, something went wrong.