Skip to content

Commit

Permalink
update news for DaaR
Browse files Browse the repository at this point in the history
  • Loading branch information
yxdyc committed Feb 6, 2025
1 parent 6f0c2b9 commit 360b809
Show file tree
Hide file tree
Showing 2 changed files with 12 additions and 6 deletions.
9 changes: 6 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@ Data-Juicer is being actively updated and maintained. We will periodically enhan


## News
- ![new](https://img.alicdn.com/imgextra/i4/O1CN01kUiDtl1HVxN6G56vN_!!6000000000764-2-tps-43-19.png) [2025-02-05] We propose a new data selection method, *DaaR*, which is theoretically informed, via treating diversity as a reward, achieves better overall performance across 7 benchmarks when post-training SOTA LLMs. See more details in [Diversity as a Reward: Fine-Tuning LLMs on a Mixture of Domain-Undetermined Data](https://dail-wlcb.oss-cn-wulanchabu.aliyuncs.com/data_juicer/DaaR_arXiv_preview.pdf).
- ![new](https://img.alicdn.com/imgextra/i4/O1CN01kUiDtl1HVxN6G56vN_!!6000000000764-2-tps-43-19.png) [2025-01-11] We release our 2.0 paper, [Data-Juicer 2.0: Cloud-Scale Adaptive Data Processing for Foundation Models](https://arxiv.org/abs/2501.14755). It now can process 70B data samples within 2.1h, using 6400 CPU cores on 50 Ray nodes from Alibaba Cloud cluster, and deduplicate 5TB data within 2.8h using 1280 CPU cores on 8 Ray nodes.
- ![new](https://img.alicdn.com/imgextra/i4/O1CN01kUiDtl1HVxN6G56vN_!!6000000000764-2-tps-43-19.png) [2025-01-03] We support post-tuning scenarios better, via 20+ related new [OPs](https://github.com/modelscope/data-juicer/releases/tag/v1.0.2), and via unified [dataset format](https://github.com/modelscope/data-juicer/releases/tag/v1.0.3) compatiable to LLaMA-Factory and ModelScope-Swift.
- ![new](https://img.alicdn.com/imgextra/i4/O1CN01kUiDtl1HVxN6G56vN_!!6000000000764-2-tps-43-19.png) [2025-12-17] We propose *HumanVBench*, which comprises 17 human-centric tasks with synthetic data, benchmarking video-MLLMs' capabilities from views of inner emotion and outer manifestations. See more details in our [paper](https://arxiv.org/abs/2412.17574), and try to [evaluate](https://github.com/modelscope/data-juicer/tree/HumanVBench) your models with it.
Expand Down Expand Up @@ -511,13 +512,15 @@ If you find Data-Juicer useful for your research or development, please kindly c

- [Data-Juicer Sandbox: A Feedback-Driven Suite for Multimodal Data-Model Co-development](https://arxiv.org/abs/2407.11784)

- [The Synergy between Data and Multi-Modal Large Language Models: A Survey from Co-Development Perspective](https://arxiv.org/abs/2407.08583)

- [ImgDiff: Contrastive Data Synthesis for Vision Large Language Models](https://arxiv.org/abs/2408.04594)

- [HumanVBench: Exploring Human-Centric Video Understanding Capabilities of MLLMs with Synthetic Benchmark Data](https://arxiv.org/abs/2412.17574)

- [Data Mixing Made Efficient: A Bivariate Scaling Law for Language Model Pretraining](https://arxiv.org/abs/2405.14908)
- [The Synergy between Data and Multi-Modal Large Language Models: A Survey from Co-Development Perspective](https://arxiv.org/abs/2407.08583)

- [Diversity as a Reward: Fine-Tuning LLMs on a Mixture of Domain-Undetermined Data](https://dail-wlcb.oss-cn-wulanchabu.aliyuncs.com/data_juicer/DaaR_arXiv_preview.pdf)

- [BiMix: A Bivariate Data Mixing Law for Language Model Pretraining](https://arxiv.org/abs/2405.14908)

</details>

Expand Down
9 changes: 6 additions & 3 deletions README_ZH.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@ Data-Juicer正在积极更新和维护中,我们将定期强化和新增更多
----

## 新消息
- ![new](https://img.alicdn.com/imgextra/i4/O1CN01kUiDtl1HVxN6G56vN_!!6000000000764-2-tps-43-19.png) [2025-02-05] 我们提出了一种新的数据选择方法 *DaaR*,该方法基于理论指导,将数据多样性建模为奖励信号,在 7 个基准测试中,微调 SOTA LLMs 取得了更好的整体表现。有关更多详细信息,请参阅 [Diversity as a Reward: Fine-Tuning LLMs on a Mixture of Domain-Undetermined Data](https://dail-wlcb.oss-cn-wulanchabu.aliyuncs.com/data_juicer/DaaR_arXiv_preview.pdf)
- ![new](https://img.alicdn.com/imgextra/i4/O1CN01kUiDtl1HVxN6G56vN_!!6000000000764-2-tps-43-19.png) [2025-01-11] 我们发布了 2.0 版论文 [Data-Juicer 2.0: Cloud-Scale Adaptive Data Processing for Foundation Models](https://arxiv.org/abs/2501.14755)。DJ现在可以使用阿里云集群中 50 个 Ray 节点上的 6400 个 CPU 核心在 2.1 小时内处理 70B 数据样本,并使用 8 个 Ray 节点上的 1280 个 CPU 核心在 2.8 小时内对 5TB 数据进行重复数据删除。
- ![new](https://img.alicdn.com/imgextra/i4/O1CN01kUiDtl1HVxN6G56vN_!!6000000000764-2-tps-43-19.png) [2025-01-03] 我们通过 20 多个相关的新 [OP](https://github.com/modelscope/data-juicer/releases/tag/v1.0.2) 以及与 LLaMA-Factory 和 ModelScope-Swift 兼容的统一 [数据集格式](https://github.com/modelscope/data-juicer/releases/tag/v1.0.3) 更好地支持Post-Tuning场景。
- ![new](https://img.alicdn.com/imgextra/i4/O1CN01kUiDtl1HVxN6G56vN_!!6000000000764-2-tps-43-19.png) [2025-12-17] 我们提出了 *HumanVBench*,它包含 17 个以人为中心的任务,使用合成数据,从内在情感和外在表现的角度对视频 MLLM 的能力进行基准测试。请参阅我们的 [论文](https://arxiv.org/abs/2412.17574) 中的更多详细信息,并尝试使用它 [评估](https://github.com/modelscope/data-juicer/tree/HumanVBench) 您的模型。
Expand Down Expand Up @@ -491,13 +492,15 @@ Data-Juicer 感谢社区[贡献者](https://github.com/modelscope/data-juicer/gr

- [Data-Juicer Sandbox: A Feedback-Driven Suite for Multimodal Data-Model Co-development](https://arxiv.org/abs/2407.11784)

- [The Synergy between Data and Multi-Modal Large Language Models: A Survey from Co-Development Perspective](https://arxiv.org/abs/2407.08583)

- [ImgDiff: Contrastive Data Synthesis for Vision Large Language Models](https://arxiv.org/abs/2408.04594)

- [HumanVBench: Exploring Human-Centric Video Understanding Capabilities of MLLMs with Synthetic Benchmark Data](https://arxiv.org/abs/2412.17574)

- [Data Mixing Made Efficient: A Bivariate Scaling Law for Language Model Pretraining](https://arxiv.org/abs/2405.14908)
- [The Synergy between Data and Multi-Modal Large Language Models: A Survey from Co-Development Perspective](https://arxiv.org/abs/2407.08583)

- [Diversity as a Reward: Fine-Tuning LLMs on a Mixture of Domain-Undetermined Data](https://dail-wlcb.oss-cn-wulanchabu.aliyuncs.com/data_juicer/DaaR_arXiv_preview.pdf)

- [BiMix: A Bivariate Data Mixing Law for Language Model Pretraining](https://arxiv.org/abs/2405.14908)

</details>

Expand Down

0 comments on commit 360b809

Please sign in to comment.