-
Notifications
You must be signed in to change notification settings - Fork 806
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add triton paraformer large online (#1242)
* add triton paraformer large online
- Loading branch information
Showing
12 changed files
with
10,109 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
### Steps: | ||
1. Prepare model repo files | ||
* git clone https://www.modelscope.cn/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online-onnx.git | ||
* Convert lfr_cmvn_pe.onnx model. For example: python export_lfr_cmvn_pe_onnx.py | ||
* If you export to onnx, you should have several model files in `${MODEL_DIR}`: | ||
``` | ||
├── README.md | ||
└── model_repo_paraformer_large_online | ||
├── cif_search | ||
│ ├── 1 | ||
│ │ └── model.py | ||
│ └── config.pbtxt | ||
├── decoder | ||
│ ├── 1 | ||
│ │ └── decoder.onnx | ||
│ └── config.pbtxt | ||
├── encoder | ||
│ ├── 1 | ||
│ │ └── model.onnx | ||
│ └── config.pbtxt | ||
├── feature_extractor | ||
│ ├── 1 | ||
│ │ └── model.py | ||
│ ├── config.pbtxt | ||
│ └── config.yaml | ||
├── lfr_cmvn_pe | ||
│ ├── 1 | ||
│ │ └── lfr_cmvn_pe.onnx | ||
│ ├── am.mvn | ||
│ ├── config.pbtxt | ||
│ └── export_lfr_cmvn_pe_onnx.py | ||
└── streaming_paraformer | ||
├── 1 | ||
└── config.pbtxt | ||
``` | ||
|
||
2. Follow below instructions to launch triton server | ||
```sh | ||
# using docker image Dockerfile/Dockerfile.server | ||
docker build . -f Dockerfile/Dockerfile.server -t triton-paraformer:23.01 | ||
docker run -it --rm --name "paraformer_triton_server" --gpus all -v <path_host/model_repo_paraformer_large_online>:/workspace/ --shm-size 1g --net host triton-paraformer:23.01 | ||
|
||
# launch the service | ||
cd /workspace | ||
tritonserver --model-repository model_repo_paraformer_large_online \ | ||
--pinned-memory-pool-byte-size=512000000 \ | ||
--cuda-memory-pool-byte-size=0:1024000000 | ||
|
||
``` | ||
|
||
### Performance benchmark with a single A10 | ||
|
||
* FP32, onnx, [paraformer larger online](https://modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online-onnx/summary | ||
),Our chunksize is 10 * 960 / 16000 = 0.6 s, so we should care about the perf of latency less than 0.6s so that it can be a realtime application. | ||
|
||
|
||
| Concurrency | Throughput | Latency_p50 (ms) | Latency_p90 (ms) | Latency_p95 (ms) | Latency_p99 (ms) | | ||
|-------------|------------|------------------|------------------|------------------|------------------| | ||
| 20 | 309.252 | 56.913 | 76.267 | 85.598 | 138.462 | | ||
| 40 | 391.058 | 97.911 | 145.509 | 150.545 | 185.399 | | ||
| 60 | 426.269 | 138.244 | 185.855 | 201.016 | 236.528 | | ||
| 80 | 431.781 | 170.991 | 227.983 | 252.453 | 412.273 | | ||
| 100 | 473.351 | 206.205 | 262.612 | 288.964 | 463.337 | | ||
|
268 changes: 268 additions & 0 deletions
268
runtime/triton_gpu/model_repo_paraformer_large_online/cif_search/1/model.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,268 @@ | ||
# Created on 2024-01-01 | ||
# Author: GuAn Zhu | ||
|
||
import triton_python_backend_utils as pb_utils | ||
import numpy as np | ||
from torch.utils.dlpack import from_dlpack | ||
import json | ||
import yaml | ||
import asyncio | ||
from collections import OrderedDict | ||
|
||
|
||
class LimitedDict(OrderedDict): | ||
def __init__(self, max_length): | ||
super().__init__() | ||
self.max_length = max_length | ||
|
||
def __setitem__(self, key, value): | ||
if len(self) >= self.max_length: | ||
self.popitem(last=False) | ||
super().__setitem__(key, value) | ||
|
||
|
||
class CIFSearch: | ||
"""CIFSearch: https://github.com/alibaba-damo-academy/FunASR/blob/main/runtime/python/onnxruntime/funasr_onnx | ||
/paraformer_online_bin.py """ | ||
def __init__(self): | ||
self.cache = {"cif_hidden": np.zeros((1, 1, 512)).astype(np.float32), | ||
"cif_alphas": np.zeros((1, 1)).astype(np.float32), "last_chunk": False} | ||
self.chunk_size = [5, 10, 5] | ||
self.tail_threshold = 0.45 | ||
self.cif_threshold = 1.0 | ||
|
||
def infer(self, hidden, alphas): | ||
batch_size, len_time, hidden_size = hidden.shape | ||
token_length = [] | ||
list_fires = [] | ||
list_frames = [] | ||
cache_alphas = [] | ||
cache_hiddens = [] | ||
alphas[:, :self.chunk_size[0]] = 0.0 | ||
alphas[:, sum(self.chunk_size[:2]):] = 0.0 | ||
|
||
if self.cache is not None and "cif_alphas" in self.cache and "cif_hidden" in self.cache: | ||
hidden = np.concatenate((self.cache["cif_hidden"], hidden), axis=1) | ||
alphas = np.concatenate((self.cache["cif_alphas"], alphas), axis=1) | ||
if self.cache is not None and "last_chunk" in self.cache and self.cache["last_chunk"]: | ||
tail_hidden = np.zeros((batch_size, 1, hidden_size)).astype(np.float32) | ||
tail_alphas = np.array([[self.tail_threshold]]).astype(np.float32) | ||
tail_alphas = np.tile(tail_alphas, (batch_size, 1)) | ||
hidden = np.concatenate((hidden, tail_hidden), axis=1) | ||
alphas = np.concatenate((alphas, tail_alphas), axis=1) | ||
|
||
len_time = alphas.shape[1] | ||
for b in range(batch_size): | ||
integrate = 0.0 | ||
frames = np.zeros(hidden_size).astype(np.float32) | ||
list_frame = [] | ||
list_fire = [] | ||
for t in range(len_time): | ||
alpha = alphas[b][t] | ||
if alpha + integrate < self.cif_threshold: | ||
integrate += alpha | ||
list_fire.append(integrate) | ||
frames += alpha * hidden[b][t] | ||
else: | ||
frames += (self.cif_threshold - integrate) * hidden[b][t] | ||
list_frame.append(frames) | ||
integrate += alpha | ||
list_fire.append(integrate) | ||
integrate -= self.cif_threshold | ||
frames = integrate * hidden[b][t] | ||
|
||
cache_alphas.append(integrate) | ||
if integrate > 0.0: | ||
cache_hiddens.append(frames / integrate) | ||
else: | ||
cache_hiddens.append(frames) | ||
|
||
token_length.append(len(list_frame)) | ||
list_fires.append(list_fire) | ||
list_frames.append(list_frame) | ||
|
||
max_token_len = max(token_length) | ||
list_ls = [] | ||
for b in range(batch_size): | ||
pad_frames = np.zeros((max_token_len - token_length[b], hidden_size)).astype(np.float32) | ||
if token_length[b] == 0: | ||
list_ls.append(pad_frames) | ||
else: | ||
list_ls.append(np.concatenate((list_frames[b], pad_frames), axis=0)) | ||
|
||
self.cache["cif_alphas"] = np.stack(cache_alphas, axis=0) | ||
self.cache["cif_alphas"] = np.expand_dims(self.cache["cif_alphas"], axis=0) | ||
self.cache["cif_hidden"] = np.stack(cache_hiddens, axis=0) | ||
self.cache["cif_hidden"] = np.expand_dims(self.cache["cif_hidden"], axis=0) | ||
|
||
return np.stack(list_ls, axis=0).astype(np.float32), np.stack(token_length, axis=0).astype(np.int32) | ||
|
||
|
||
class TritonPythonModel: | ||
"""Your Python model must use the same class name. Every Python model | ||
that is created must have "TritonPythonModel" as the class name. | ||
""" | ||
|
||
def initialize(self, args): | ||
"""`initialize` is called only once when the model is being loaded. | ||
Implementing `initialize` function is optional. This function allows | ||
the model to initialize any state associated with this model. | ||
Parameters | ||
---------- | ||
args : dict | ||
Both keys and values are strings. The dictionary keys and values are: | ||
* model_config: A JSON string containing the model configuration | ||
* model_instance_kind: A string containing model instance kind | ||
* model_instance_device_id: A string containing model instance device ID | ||
* model_repository: Model repository path | ||
* model_version: Model version | ||
* model_name: Model name | ||
""" | ||
self.model_config = model_config = json.loads(args['model_config']) | ||
self.max_batch_size = max(model_config["max_batch_size"], 1) | ||
|
||
# # Get OUTPUT0 configuration | ||
output0_config = pb_utils.get_output_config_by_name( | ||
model_config, "transcripts") | ||
# # Convert Triton types to numpy types | ||
self.out0_dtype = pb_utils.triton_string_to_numpy( | ||
output0_config['data_type']) | ||
|
||
self.init_vocab(self.model_config['parameters']) | ||
|
||
self.cif_search_cache = LimitedDict(1024) | ||
self.start = LimitedDict(1024) | ||
|
||
def init_vocab(self, parameters): | ||
for li in parameters.items(): | ||
key, value = li | ||
value = value["string_value"] | ||
if key == "vocabulary": | ||
self.vocab_dict = self.load_vocab(value) | ||
|
||
def load_vocab(self, vocab_file): | ||
with open(str(vocab_file), 'rb') as f: | ||
config = yaml.load(f, Loader=yaml.Loader) | ||
return config['token_list'] | ||
|
||
async def execute(self, requests): | ||
"""`execute` must be implemented in every Python model. `execute` | ||
function receives a list of pb_utils.InferenceRequest as the only | ||
argument. This function is called when an inference is requested | ||
for this model. | ||
Parameters | ||
---------- | ||
requests : list | ||
A list of pb_utils.InferenceRequest | ||
Returns | ||
------- | ||
list | ||
A list of pb_utils.InferenceResponse. The length of this list must | ||
be the same as `requests` | ||
""" | ||
# Every Python backend must iterate through list of requests and create | ||
# an instance of pb_utils.InferenceResponse class for each of them. You | ||
# should avoid storing any of the input Tensors in the class attributes | ||
# as they will be overridden in subsequent inference requests. You can | ||
# make a copy of the underlying NumPy array and store it if it is | ||
# required. | ||
|
||
batch_end = [] | ||
responses = [] | ||
batch_corrid = [] | ||
qualified_corrid = [] | ||
batch_result = {} | ||
inference_response_awaits = [] | ||
|
||
for request in requests: | ||
hidden = pb_utils.get_input_tensor_by_name(request, "enc") | ||
hidden = from_dlpack(hidden.to_dlpack()).cpu().numpy() | ||
alphas = pb_utils.get_input_tensor_by_name(request, "alphas") | ||
alphas = from_dlpack(alphas.to_dlpack()).cpu().numpy() | ||
hidden_len = pb_utils.get_input_tensor_by_name(request, "enc_len") | ||
hidden_len = from_dlpack(hidden_len.to_dlpack()).cpu().numpy() | ||
|
||
in_start = pb_utils.get_input_tensor_by_name(request, "START") | ||
start = in_start.as_numpy()[0][0] | ||
|
||
in_corrid = pb_utils.get_input_tensor_by_name(request, "CORRID") | ||
corrid = in_corrid.as_numpy()[0][0] | ||
|
||
in_end = pb_utils.get_input_tensor_by_name(request, "END") | ||
end = in_end.as_numpy()[0][0] | ||
|
||
batch_end.append(end) | ||
batch_corrid.append(corrid) | ||
|
||
if start: | ||
self.cif_search_cache[corrid] = CIFSearch() | ||
self.start[corrid] = 1 | ||
if end: | ||
self.cif_search_cache[corrid].cache["last_chunk"] = True | ||
|
||
acoustic, acoustic_len = self.cif_search_cache[corrid].infer(hidden, alphas) | ||
batch_result[corrid] = '' | ||
if acoustic.shape[1] == 0: | ||
continue | ||
else: | ||
qualified_corrid.append(corrid) | ||
input_tensor0 = pb_utils.Tensor("enc", hidden) | ||
input_tensor1 = pb_utils.Tensor("enc_len", np.array([hidden_len], dtype=np.int32)) | ||
input_tensor2 = pb_utils.Tensor("acoustic_embeds", acoustic) | ||
input_tensor3 = pb_utils.Tensor("acoustic_embeds_len", np.array([acoustic_len], dtype=np.int32)) | ||
input_tensors = [input_tensor0, input_tensor1, input_tensor2, input_tensor3] | ||
|
||
if self.start[corrid] and end: | ||
flag = 3 | ||
elif end: | ||
flag = 2 | ||
elif self.start[corrid]: | ||
flag = 1 | ||
self.start[corrid] = 0 | ||
else: | ||
flag = 0 | ||
inference_request = pb_utils.InferenceRequest( | ||
model_name='decoder', | ||
requested_output_names=['sample_ids'], | ||
inputs=input_tensors, | ||
request_id='', | ||
correlation_id=corrid, | ||
flags=flag | ||
) | ||
inference_response_awaits.append(inference_request.async_exec()) | ||
|
||
inference_responses = await asyncio.gather(*inference_response_awaits) | ||
|
||
for index_corrid, inference_response in zip(qualified_corrid, inference_responses): | ||
if inference_response.has_error(): | ||
raise pb_utils.TritonModelException(inference_response.error().message()) | ||
else: | ||
sample_ids = pb_utils.get_output_tensor_by_name(inference_response, 'sample_ids') | ||
token_ids = from_dlpack(sample_ids.to_dlpack()).cpu().numpy()[0] | ||
|
||
# Change integer-ids to tokens | ||
tokens = [self.vocab_dict[token_id] for token_id in token_ids] | ||
batch_result[index_corrid] = "".join(tokens) | ||
|
||
for i, index_corrid in enumerate(batch_corrid): | ||
sent = np.array([batch_result[index_corrid]]) | ||
out0 = pb_utils.Tensor("transcripts", sent.astype(self.out0_dtype)) | ||
inference_response = pb_utils.InferenceResponse(output_tensors=[out0]) | ||
responses.append(inference_response) | ||
|
||
if batch_end[i]: | ||
del self.cif_search_cache[index_corrid] | ||
del self.start[index_corrid] | ||
|
||
return responses | ||
|
||
def finalize(self): | ||
"""`finalize` is called only once when the model is being unloaded. | ||
Implementing `finalize` function is optional. This function allows | ||
the model to perform any necessary clean ups before exit. | ||
""" | ||
print('Cleaning up...') | ||
|
Oops, something went wrong.