-
Notifications
You must be signed in to change notification settings - Fork 70
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add hf * import fix * black reformat * get_attn_func in hf loader * typo * black reformat * black reformat * black reformat * reqs * reqs * reqs * reqs * indexing bug
- Loading branch information
1 parent
69c9235
commit c0f1319
Showing
5 changed files
with
240 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from .configuration_openlm import OpenLMConfig | ||
from .modeling_openlm import OpenLMForCausalLM | ||
from .tokenization_openlm import OpenLMTokenizerFast |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
# Follows OLMo's HF template | ||
|
||
""" | ||
OpenLM configuration | ||
""" | ||
|
||
from transformers import AutoConfig, PretrainedConfig | ||
from transformers.utils import logging | ||
|
||
from open_lm.model import Params | ||
|
||
logger = logging.get_logger(__name__) | ||
|
||
|
||
class OpenLMConfig(PretrainedConfig): | ||
model_type = "openlm" | ||
|
||
def __init__(self, **kwargs): | ||
kwargs["architectures"] = ["OpenLMForCausalLM"] | ||
super().__init__(**kwargs) | ||
|
||
|
||
# Register the config class so that it is available for transformer pipelines, auto-loading etc. | ||
AutoConfig.register("openlm", OpenLMConfig) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
# Follows OLMo's HF template | ||
|
||
import logging | ||
from dataclasses import fields | ||
from typing import List, Optional, Tuple, Union | ||
|
||
import torch | ||
from transformers import PreTrainedModel | ||
from transformers.cache_utils import Cache | ||
from transformers.modeling_outputs import CausalLMOutputWithPast | ||
from transformers.models.auto import AutoModelForCausalLM | ||
|
||
from open_lm.model import Params, Transformer | ||
from open_lm.norms import get_norm_class | ||
from open_lm.attention import get_attn_func | ||
|
||
from .configuration_openlm import OpenLMConfig | ||
|
||
log = logging.getLogger(__name__) | ||
|
||
|
||
def create_model_config_from_pretrained_config(config: OpenLMConfig): | ||
""" | ||
Utility function | ||
""" | ||
|
||
kwargs = {} | ||
for field in fields(Params): | ||
if hasattr(config, field.name): | ||
kwargs[field.name] = getattr(config, field.name) | ||
|
||
model_config = Params(**kwargs) | ||
|
||
if hasattr(config, "norm_type"): | ||
model_config.norm_type = get_norm_class(config.norm_type) | ||
|
||
if hasattr(config, "attn_name"): | ||
model_config.attn_func = get_attn_func(config.attn_name) | ||
|
||
return model_config | ||
|
||
|
||
class OpenLMForCausalLM(PreTrainedModel): | ||
""" | ||
Extremely barebones HF model wrapper. | ||
""" | ||
|
||
config_class = OpenLMConfig | ||
base_model_prefix = "model" | ||
|
||
def __init__(self, config: OpenLMConfig, model: Optional[Transformer] = None): | ||
super().__init__(config) | ||
|
||
if not model: | ||
self.model_config = create_model_config_from_pretrained_config(config) | ||
# Initialize model (always on CPU to start with so we don't run out of GPU memory). | ||
self.model_config.init_device = "cpu" | ||
self.model = Transformer(self.model_config) | ||
|
||
else: | ||
self.model = model | ||
|
||
def forward( | ||
self, | ||
input_ids: torch.LongTensor = None, | ||
inputs_embeds: Optional[torch.FloatTensor] = None, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
attention_bias: Optional[torch.Tensor] = None, | ||
past_key_values: Optional[List[torch.FloatTensor]] = None, | ||
labels: Optional[torch.LongTensor] = None, | ||
use_cache: Optional[bool] = None, | ||
output_attentions: Optional[bool] = None, | ||
output_hidden_states: Optional[bool] = None, | ||
return_dict: Optional[bool] = None, | ||
cache_position: Optional[ | ||
Cache | ||
] = None, # This is a hack mitigation of an issue in transformers `4.39.x` https://github.com/huggingface/transformers/issues/29426 | ||
) -> Union[Tuple, CausalLMOutputWithPast]: | ||
if inputs_embeds is not None: | ||
log.warning("inputs_embeds is set but OpenLM does not support it yet") | ||
if attention_bias is not None: | ||
log.warning("attention_bias is et but OpenLM does not support it yet") | ||
if use_cache is None: | ||
use_cache = True | ||
if output_attentions: | ||
raise ValueError("output_attentions is not yet supported in OpenLM") | ||
if output_hidden_states: | ||
raise ValueError("output_hidden_states is not yet supported in OpenLM") | ||
|
||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | ||
# print("outer past_key_values: ", type(past_key_values)) | ||
# if past_key_values is not None: | ||
# print(len(past_key_values), type(past_key_values[0])) | ||
outputs = self.model.forward( | ||
input_ids=input_ids, | ||
attention_mask=attention_mask, | ||
past_key_values=past_key_values, | ||
use_cache=use_cache, | ||
) | ||
|
||
logits = outputs[0] | ||
past_key_values = outputs[2] | ||
hidden_states = None | ||
|
||
loss = None | ||
if labels is not None: | ||
# Shift so that tokens < n predict n | ||
shift_logits = logits[..., :-1, :].contiguous() | ||
shift_labels = labels[..., 1:].contiguous() | ||
# Flatten the tokens | ||
loss_fct = torch.nn.CrossEntropyLoss() | ||
shift_logits = shift_logits.view(-1, self.model_config.vocab_size) | ||
shift_labels = shift_labels.view(-1) | ||
# Enable model parallelism | ||
shift_labels = shift_labels.to(shift_logits.device) | ||
loss = loss_fct(shift_logits, shift_labels) | ||
|
||
return CausalLMOutputWithPast( | ||
loss=loss, | ||
logits=logits, | ||
past_key_values=past_key_values, | ||
hidden_states=hidden_states, | ||
) | ||
|
||
def can_generate(self) -> bool: | ||
return True | ||
|
||
def prepare_inputs_for_generation( | ||
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs | ||
): | ||
if past_key_values is not None: | ||
if isinstance(past_key_values[0][1], int): | ||
# This assumes that the second item of past key values is the length of the past (this is the case for linear attention) | ||
past_length = past_key_values[0][1] | ||
else: | ||
# This assumes that the first item of past key values is a list of all the past keys, thus the | ||
# shape 1 is the length of the past (this is the case for attention without window) | ||
past_length = past_key_values[0][0].shape[1] | ||
|
||
# Some generation methods already pass only the last input ID | ||
if input_ids.shape[1] > past_length: | ||
remove_prefix_length = past_length | ||
else: | ||
# Default to old behavior: keep only final ID | ||
remove_prefix_length = input_ids.shape[1] - 1 | ||
|
||
input_ids = input_ids[:, remove_prefix_length:] | ||
|
||
model_inputs = { | ||
"input_ids": input_ids, | ||
"past_key_values": past_key_values, | ||
"use_cache": kwargs.pop("use_cache", True), | ||
} | ||
return model_inputs | ||
|
||
def get_input_embeddings(self) -> torch.nn.Module: | ||
return self.model.tok_embeddings | ||
|
||
def set_input_embeddings(self, value: torch.nn.Module): | ||
self.model.tok_embeddings = value | ||
|
||
def get_output_embeddings(self): | ||
if self.model_config.weight_tying: | ||
return self.model.tok_embeddings | ||
else: | ||
return self.model.output | ||
|
||
def set_output_embeddings(self, value: torch.nn.Module): | ||
if self.model_config.weight_tying: | ||
self.model.tok_embeddings = value | ||
else: | ||
self.model.output = value | ||
|
||
def tie_weights(self): | ||
""" | ||
Copied from OLMo (description below). I removed it and the results just became garbage, so this pass is needed. | ||
This function is intentionally left as a no-op. | ||
Weight tying is handled as follows: | ||
- When the model is initialized, the `ff_out` layer is conditionally defined based on the `weight_tying` configuration. | ||
See: `if not config.weight_tying: self.transformer.update(...)` in `olmo/model.py`. | ||
- When computing logits, the `wte` weights are used directly if `weight_tying` is enabled. | ||
See: `if self.config.weight_tying: logits = F.linear(x, self.transformer.wte.weight, None)` in the `forward` method. | ||
Therefore, there is no need to explicitly tie the weights in this function. | ||
""" | ||
pass | ||
|
||
def resize_token_embeddings( | ||
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None | ||
) -> torch.nn.Embedding: | ||
raise NotImplementedError | ||
|
||
|
||
# Register the model so that it is available for transformer pipelines, auto-loading, etc. | ||
AutoModelForCausalLM.register(OpenLMConfig, OpenLMForCausalLM) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
# Follows OLMo's HF template | ||
|
||
from transformers import AutoTokenizer, PreTrainedTokenizerFast | ||
|
||
from open_lm.hf.configuration_openlm import OpenLMConfig | ||
|
||
|
||
class OpenLMTokenizerFast(PreTrainedTokenizerFast): | ||
# Note: OpenLM's tokenizer is already a wrapper around huggingface. This is potentially unnecessary. | ||
pass | ||
|
||
# def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | ||
# # This is required to make the implementation complete. | ||
# pass | ||
|
||
|
||
# Register the tokenizer class so that it is available for transformer pipelines, auto-loading etc. | ||
AutoTokenizer.register(OpenLMConfig, fast_tokenizer_class=OpenLMTokenizerFast) |