Skip to content

Commit

Permalink
Remove langsmith refs (#111)
Browse files Browse the repository at this point in the history
Signed-off-by: Michael Berk <[email protected]>
  • Loading branch information
michael-berk authored Sep 26, 2024
1 parent d1f4788 commit 13c57f5
Showing 1 changed file with 40 additions and 63 deletions.
103 changes: 40 additions & 63 deletions website/blog/2024-08-06-langgraph-model-from-code/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ Throughout this post we will demonstrate how to leverage MLflow's capabilities t
- **Persistence**: Automatically save state after each step in the graph. Pause and resume the graph execution at any point to support error recovery, human-in-the-loop workflows, time travel and more.
- **Human-in-the-Loop**: Interrupt graph execution to approve or edit next action planned by the agent.
- **Streaming Support**: Stream outputs as they are produced by each node (including token streaming).
- **Integration with LangChain**: LangGraph integrates seamlessly with LangChain and LangSmith (but does not require them).
- **Integration with LangChain**: LangGraph integrates seamlessly with LangChain.

LangGraph allows you to define flows that involve cycles, essential for most agentic architectures, differentiating it from DAG-based solutions. As a very low-level framework, it provides fine-grained control over both the flow and state of your application, crucial for creating reliable agents. Additionally, LangGraph includes built-in persistence, enabling advanced human-in-the-loop and memory features.

Expand All @@ -32,7 +32,7 @@ First, we must install the required dependencies. We will use OpenAI for our LLM

```python
%%capture
%pip install langsmith==0.1.125 langchain_openai==0.2.0 langchain==0.3.0 langgraph==0.2.24
%pip install langchain_openai==0.2.0 langchain==0.3.0 langgraph==0.2.27
%pip install -U mlflow
```

Expand All @@ -41,11 +41,10 @@ Next, let's get our relevant secrets. `getpass`, as demonstrated in the [LangGra
```python
import os

# Set required environment variables for authenticating to OpenAI and LangSmith
# Set required environment variables for authenticating to OpenAI
# Check additional MLflow tutorials for examples of authentication if needed
# https://mlflow.org/docs/latest/llms/openai/guide/index.html#direct-openai-service-usage
assert "OPENAI_API_KEY" in os.environ, "Please set the OPENAI_API_KEY environment variable."
assert "LANGSMITH_API_KEY" in os.environ, "Please set the LANGSMITH_API_KEY environment variable."
```

## 2 - Custom Utilities
Expand All @@ -62,23 +61,6 @@ import os
from typing import Union
from langgraph.pregel.io import AddableValuesDict


def validate_langgraph_environment_variables():
"""Ensure that required secrets and project environment variables are present."""

# Validate enviornment variable secrets are present
required_secrets = ["OPENAI_API_KEY", "LANGSMITH_API_KEY"]

if missing_keys := [key for key in required_secrets if not os.environ.get(key)]:
raise ValueError(f"The following keys are missing: {missing_keys}")

# Add project environent variables if not present
os.environ["LANCHAIN_TRACING_V2"] = os.environ.get("LANGCHAIN_TRACING_V2", "true")
os.environ["LANGCHAIN_PROJECT"] = os.environ.get(
"LANGCHAIN_TRACING_V2", "LangGraph MLflow Tutorial"
)


def _langgraph_message_to_mlflow_message(
langgraph_message: AddableValuesDict,
) -> dict:
Expand Down Expand Up @@ -111,7 +93,6 @@ def increment_message_history(
]

return message_history + [new_message]

```

By the end of this step, you should see a new file in your current directory with the name `langgraph_utils.py`.
Expand Down Expand Up @@ -145,15 +126,13 @@ from langgraph.graph.state import CompiledStateGraph

import mlflow

import os
from typing import TypedDict, Annotated

# Our custom utilities
from langgraph_utils import validate_langgraph_environment_variables

def load_graph() -> CompiledStateGraph:
"""Create example chatbot from LangGraph Quickstart."""

validate_langgraph_environment_variables()
assert "OPENAI_API_KEY" in os.environ, "Please set the OPENAI_API_KEY environment variable."

class State(TypedDict):
messages: Annotated[list, add_messages]
Expand Down Expand Up @@ -181,13 +160,6 @@ After creating this implementation, we can leverage the standard MLflow APIs to
```python
import mlflow

# Custom utilities for handling chat history
from langgraph_utils import (
increment_message_history,
get_most_recent_message,
)


with mlflow.start_run() as run_id:
model_info = mlflow.langchain.log_model(
lc_model="graph.py", # Path to our model Python file
Expand All @@ -206,40 +178,45 @@ In the code below, we demonstrate that our chain has chatbot functionality!
```python
import mlflow

# Custom utilities for handling chat history
from langgraph_utils import (
increment_message_history,
get_most_recent_message,
)

# Enable tracing
mlflow.set_experiment("Tracing example") # In Databricks, use an absolute path. Visit Databricks docs for more.
mlflow.langchain.autolog()

# Load the model
with mlflow.start_run():
loaded_model = mlflow.langchain.load_model(model_uri)

# Show inference and message history functionality
print("-------- Message 1 -----------")
message = "What's my name?"
payload = {"messages": [{"role": "user", "content": message}]}
response = loaded_model.invoke(payload)

print(f"User: {message}")
print(f"Agent: {get_most_recent_message(response)}")

print("\n-------- Message 2 -----------")
message = "My name is Morpheus."
new_messages = increment_message_history(response, {"role": "user", "content": message})
payload = {"messages": new_messages}
response = loaded_model.invoke(payload)

print(f"User: {message}")
print(f"Agent: {get_most_recent_message(response)}")

print("\n-------- Message 3 -----------")
message = "What is my name?"
new_messages = increment_message_history(response, {"role": "user", "content": message})
payload = {"messages": new_messages}
response = loaded_model.invoke(payload)

print(f"User: {message}")
print(f"Agent: {get_most_recent_message(response)}")
loaded_model = mlflow.langchain.load_model(model_uri)

# Show inference and message history functionality
print("-------- Message 1 -----------")
message = "What's my name?"
payload = {"messages": [{"role": "user", "content": message}]}
response = loaded_model.invoke(payload)

print(f"User: {message}")
print(f"Agent: {get_most_recent_message(response)}")

print("\n-------- Message 2 -----------")
message = "My name is Morpheus."
new_messages = increment_message_history(response, {"role": "user", "content": message})
payload = {"messages": new_messages}
response = loaded_model.invoke(payload)

print(f"User: {message}")
print(f"Agent: {get_most_recent_message(response)}")

print("\n-------- Message 3 -----------")
message = "What is my name?"
new_messages = increment_message_history(response, {"role": "user", "content": message})
payload = {"messages": new_messages}
response = loaded_model.invoke(payload)

print(f"User: {message}")
print(f"Agent: {get_most_recent_message(response)}")
```

Ouput:
Expand All @@ -264,7 +241,7 @@ Before concluding, let's demonstrate [MLflow tracing](https://mlflow.org/docs/la

MLflow Tracing is a feature that enhances LLM observability in your Generative AI (GenAI) applications by capturing detailed information about the execution of your application’s services. Tracing provides a way to record the inputs, outputs, and metadata associated with each intermediate step of a request, enabling you to easily pinpoint the source of bugs and unexpected behaviors.

Start the MLflow server as outlined in the [tracking server docs](https://mlflow.org/docs/latest/tracking/server.html). After entering the MLflow UI, we can see our experiment and corresdponding traces.
Start the MLflow server as outlined in the [tracking server docs](https://mlflow.org/docs/latest/tracking/server.html). After entering the MLflow UI, we can see our experiment and corresponding traces.

![MLflow UI Experiment Traces](_img/mlflow_ui_experiment_traces.png)

Expand Down

0 comments on commit 13c57f5

Please sign in to comment.