Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(databricks): make databricks save to external tables in azure storage account #7

Merged
merged 1 commit into from
Sep 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 12 additions & 1 deletion databricks/Havvarsel - Ingest and store Depth Index Table.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,5 +17,16 @@
"depthItem.depthValue"
)

depth_data.write.format("delta").saveAsTable("havvarsel_depth_index_to_meter_mapping")
# COMMAND ----------

from helpers.adls_utils import save_df_as_delta
save_df_as_delta(depth_data, "depth_index_to_meter_mapping")


# COMMAND ----------

from helpers.adls_utils import read_df_as_delta

df = read_df_as_delta("depth_index_to_meter_mapping")
display(df)

13 changes: 4 additions & 9 deletions databricks/Havvarsel - Ingest as Bronze.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@
url = f"https://api.havvarsel.no/apis/duapi/havvarsel/v2/temperatureprojection/{lat}/{lon}?depth={depth_index}"
headers = {"accept": "application/json"}
response = requests.get(url, headers=headers)

data = response.json()
df_raw = spark.read.json(sc.parallelize([data]))

Expand All @@ -23,6 +22,7 @@

# COMMAND ----------

from datetime import datetime
depth_data = spark.table("havvarsel_depth_index_to_meter_mapping")
depth_m = depth_data.filter(depth_data.depthIndex == depth_index).collect()[0].depthValue
fetch_date = datetime.now().strftime("%Y-%m-%d")
Expand All @@ -31,12 +31,7 @@

# COMMAND ----------

from datetime import datetime

bronze_fetch_date_path = f"/mnt/data/bronze/hav_temperature_projection_{fetch_date}"
bronze_latest_data_path = "/mnt/data/bronze/hav_temperature_projection_latest"

df_bronze.write.format("delta").mode("overwrite").save(bronze_fetch_date_path)
df_bronze.write.format("delta").mode("overwrite").save(bronze_latest_data_path)

from helpers.adls_utils import save_df_as_delta
save_df_as_delta(df_bronze, f"/bronze/hav_temperature_projection_{fetch_date}")
save_df_as_delta(df_bronze, "/bronze/hav_temperature_projection_latest")

12 changes: 6 additions & 6 deletions databricks/Havvarsel - Transform to Silver.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
# Databricks notebook source
df_bronze_0 = spark.read.format("delta").load("/mnt/data/bronze/hav_temperature_projection_latest")
from helpers.adls_utils import read_df_as_delta
df_bronze_0 = read_df_as_delta("/bronze/hav_temperature_projection_latest")
display(df_bronze_0)

# COMMAND ----------

from pyspark.sql.functions import explode, from_unixtime, col


# Extract lat and lon, and explode variables
df_bronze_1 = df_bronze_0.select(
col("closestGridPointWithData.lat").alias("lat"),
Expand Down Expand Up @@ -61,11 +61,11 @@
# COMMAND ----------


silver_latest_path = "/mnt/data/silver/hav_temperature_projection_latest"
df_silver.write.format("delta").mode("overwrite").save(silver_latest_path)
from helpers.adls_utils import save_df_as_delta
save_df_as_delta(df_silver, "/silver/hav_temperature_projection_latest")

# COMMAND ----------

df_check_silver = spark.read.format("delta").load(silver_latest_path)

from helpers.adls_utils import read_df_as_delta
df_check_silver = read_df_as_delta("/silver/hav_temperature_projection_latest")
display(df_check_silver)
24 changes: 24 additions & 0 deletions databricks/helpers/adls_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
from databricks.sdk.runtime import *
import pyspark.dbutils
from pyspark.sql import SparkSession

STORAGE_ACCOUNT = "devaquaplatformst01"
spark = SparkSession.builder.getOrCreate()

def connect_to_adls(storage_account = STORAGE_ACCOUNT):
spark.conf.set(
f"fs.azure.account.key.{storage_account}.dfs.core.windows.net",
dbutils.secrets.get(scope="terraform-created-scope", key="storage-account-key"))

def get_adls_file_path(container = "datalake", storage_account = STORAGE_ACCOUNT):
return (f"abfss://{container}@{storage_account}.dfs.core.windows.net/havvarsel/")


def save_df_as_delta(df, table_name, mode="overwrite", file_path=get_adls_file_path()):
connect_to_adls()
df.write.format("delta").mode(mode).save(f"{file_path}/{table_name}")

def read_df_as_delta(file_name, file_path=get_adls_file_path()):
connect_to_adls()
df = spark.read.format("delta").load(f"{file_path}/{file_name}")
return df