Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add more fused element-wise operators #743

Open
wants to merge 17 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 12 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
205 changes: 197 additions & 8 deletions operators/cuda/add_mul.h
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,36 @@

namespace contrib {

inline void _FillOutputShape3Op(std::vector<int64_t>& dimsA,
xadupre marked this conversation as resolved.
Show resolved Hide resolved
std::vector<int64_t>& dimsB,
std::vector<int64_t>& dimsC,
std::vector<int64_t>& output_dims) {
auto max_rank = std::max(dimsA.size(), std::max(dimsB.size(), dimsC.size()));
while (dimsA.size() < max_rank)
dimsA.insert(dimsA.begin(), 1);
while (dimsB.size() < max_rank)
dimsB.insert(dimsB.begin(), 1);
while (dimsC.size() < max_rank)
dimsC.insert(dimsC.begin(), 1);

output_dims.resize(dimsA.size());
for (size_t i = 0; i < dimsA.size(); ++i) {
output_dims[i] = std::max(std::max(dimsA[i], dimsB[i]), dimsC[i]);
if (output_dims[i] == 0) {
ORTX_CXX_API_THROW("One of the input dimensions is null.", ORT_RUNTIME_EXCEPTION);
}
}
}

/**
* AddOrMulSharedInput(A, B, C) = A + B, A + C ifaddition is true
* AddOrMulSharedInput(A, B, C) = A * B, A * C ifaddition is false
*
* The operator supports broadcast on first dimensions.
* A[1, J] + B[I, J] is supported,
* A[1, J, 1] + B[I, J, K] is not supported,
xadupre marked this conversation as resolved.
Show resolved Hide resolved
* In all other cases, all tensors must have the same shape.
*/
template <typename T, bool addition>
struct AddOrMulSharedInput {
template <typename TDict>
Expand All @@ -20,27 +50,186 @@ struct AddOrMulSharedInput {
const ortc::Tensor<T>& tensor_c,
ortc::Tensor<T>& output_ab,
ortc::Tensor<T>& output_ac) const {
const T* input_data_a = tensor_a.Data();
const T* input_data_b = tensor_b.Data();
const T* input_data_c = tensor_c.Data();

auto length_a = tensor_a.NumberOfElement();
auto length_b = tensor_b.NumberOfElement();
auto length_c = tensor_c.NumberOfElement();

if (0 == length_a || 0 == length_b || 0 == length_c) {
xadupre marked this conversation as resolved.
Show resolved Hide resolved
return {};
}

T* output_data_ab = output_ab.Allocate(length_a <= length_b ? tensor_b.Shape() : tensor_a.Shape());
T* output_data_ac = output_ac.Allocate(length_a <= length_c ? tensor_c.Shape() : tensor_a.Shape());

if (0 == input_data_a || 0 == input_data_b || 0 == input_data_c) {
return {};
}
LaunchAddOrMulSharedInputKernel<T>(reinterpret_cast<cudaStream_t>(ctx->GetCudaStream()),
input_data_a, input_data_b, input_data_c,
tensor_a.Data(), tensor_b.Data(), tensor_c.Data(),
output_data_ab, output_data_ac,
length_a, length_b, length_c,
addition);
return {};
}
};

/**
* AddOrMulTwice(A, B, C) = A + B + C ifaddition is true
* AddOrMulTwice(A, B, C) = A * B * C ifaddition is false
*
* The operator supports broadcast on first dimensions.
* A[1, J] + B[I, J] is supported,
* A[1, J, 1] + B[I, J, K] is not supported,
*/
template <typename T, bool addition>
struct AddOrMulTwice {
xadupre marked this conversation as resolved.
Show resolved Hide resolved
template <typename TDict>
OrtxStatus OnModelAttach(const TDict& /*dict*/) {
return {};
}
OrtxStatus Compute(Ort::Custom::CUDAKernelContext* ctx,
const ortc::Tensor<T>& tensor_a,
const ortc::Tensor<T>& tensor_b,
const ortc::Tensor<T>& tensor_c,
ortc::Tensor<T>& output) const {
auto length_a = tensor_a.NumberOfElement();
auto length_b = tensor_b.NumberOfElement();
auto length_c = tensor_c.NumberOfElement();

if (0 == length_a || 0 == length_b || 0 == length_c) {
return {};
}

std::vector<int64_t> dimsA = tensor_a.Shape();
std::vector<int64_t> dimsB = tensor_b.Shape();
std::vector<int64_t> dimsC = tensor_c.Shape();
std::vector<int64_t> output_dims;
_FillOutputShape3Op(dimsA, dimsB, dimsC, output_dims);

T* output_data = output.Allocate(output_dims);

LaunchAddOrMulTwiceKernel<T>(reinterpret_cast<cudaStream_t>(ctx->GetCudaStream()),
tensor_a.Data(), tensor_b.Data(), tensor_c.Data(),
output_data,
length_a, length_b, length_c,
addition);
return {};
}
};

/**
* AddAndMul(A, B, C) = (A + B) * C if addition_first is true
* AddAndMul(A, B, C) = A * B + C if addition_first is false
*
* The operator supports broadcast on first dimensions.
* A[1, J] + B[I, J] is supported,
* A[1, J, 1] + B[I, J, K] is not supported,
*
* If switchMiddleAxis is true, then the output is transposed, then
* AddAndMul(A, B, C, switchMiddleAxis=1) = Transpose((A + B) * C, perm=[0, 2, 1, 3])
*/
template <typename T, bool addition_first>
struct AddAndMul {
template <typename TDict>
OrtxStatus OnModelAttach(const TDict& dict) {
int64_t default_value = 0;
switchMiddelAxis_ = dict.TryToGetAttributeWithDefault("switchMiddleAxis", default_value) == 1;
return {};
}
OrtxStatus Compute(Ort::Custom::CUDAKernelContext* ctx,
const ortc::Tensor<T>& tensor_a,
const ortc::Tensor<T>& tensor_b,
const ortc::Tensor<T>& tensor_c,
ortc::Tensor<T>& output) const {
auto length_a = tensor_a.NumberOfElement();
auto length_b = tensor_b.NumberOfElement();
auto length_c = tensor_c.NumberOfElement();

if (0 == length_a || 0 == length_b || 0 == length_c) {
return {};
}

std::vector<int64_t> dimsA = tensor_a.Shape();
std::vector<int64_t> dimsB = tensor_b.Shape();
std::vector<int64_t> dimsC = tensor_c.Shape();
std::vector<int64_t> output_dims;
_FillOutputShape3Op(dimsA, dimsB, dimsC, output_dims);

if (switchMiddelAxis_) {
if (output_dims.size() != 4) {
ORTX_CXX_API_THROW("switchMiddleAxes only works with 4D tensors", ORT_RUNTIME_EXCEPTION);
}
int64_t d4 = output_dims[output_dims.size() - 1];
int64_t d3 = output_dims[output_dims.size() - 2];
int64_t d2 = output_dims[output_dims.size() - 3];
output_dims[1] = d3;
output_dims[2] = d2;
T* output_data = output.Allocate(output_dims);
LaunchAddAndMulSwitchMiddleAxesKernel<T>(reinterpret_cast<cudaStream_t>(ctx->GetCudaStream()),
tensor_a.Data(), tensor_b.Data(), tensor_c.Data(),
output_data,
length_a, length_b, length_c,
addition_first, d2, d3, d4);
} else {
T* output_data = output.Allocate(output_dims);
LaunchAddAndMulKernel<T>(reinterpret_cast<cudaStream_t>(ctx->GetCudaStream()),
tensor_a.Data(), tensor_b.Data(), tensor_c.Data(),
output_data,
length_a, length_b, length_c,
addition_first);
}
return {};
}

private:
bool switchMiddelAxis_;
};

/**
* SubAndMul(A, B, C) = (A - B) * C if subtract_first is true
* SubAndMul(A, B, C) = A * B - C if subtract_first is false
*
* The operator supports broadcast on first dimensions.
* A[1, J] + B[I, J] is supported,
* A[1, J, 1] + B[I, J, K] is not supported,
*
* If negative is true, then the output is transposed, then
xadupre marked this conversation as resolved.
Show resolved Hide resolved
* SubAndMul(A, B, C, negative=1) = (B - A) * C
*/
template <typename T, bool subtract_first>
struct SubAndMul {
xadupre marked this conversation as resolved.
Show resolved Hide resolved
template <typename TDict>
OrtxStatus OnModelAttach(const TDict& dict) {
int64_t default_value = 0;
negative_ = dict.TryToGetAttributeWithDefault("negative", default_value) == 1;
return {};
}
OrtxStatus Compute(Ort::Custom::CUDAKernelContext* ctx,
const ortc::Tensor<T>& tensor_a,
const ortc::Tensor<T>& tensor_b,
const ortc::Tensor<T>& tensor_c,
ortc::Tensor<T>& output) const {
auto length_a = tensor_a.NumberOfElement();
auto length_b = tensor_b.NumberOfElement();
auto length_c = tensor_c.NumberOfElement();
if (0 == length_a || 0 == length_b || 0 == length_c) {
return {};
}

std::vector<int64_t> dimsA = tensor_a.Shape();
std::vector<int64_t> dimsB = tensor_b.Shape();
std::vector<int64_t> dimsC = tensor_c.Shape();
std::vector<int64_t> output_dims;
_FillOutputShape3Op(dimsA, dimsB, dimsC, output_dims);
T* output_data = output.Allocate(output_dims);

LaunchSubAndMulKernel<T>(reinterpret_cast<cudaStream_t>(ctx->GetCudaStream()),
tensor_a.Data(), tensor_b.Data(), tensor_c.Data(),
output_data,
length_a, length_b, length_c,
subtract_first, negative_);
return {};
}

private:
bool negative_;
};

} // namespace contrib
Loading
Loading