Skip to content

Commit

Permalink
ENH: Addition of New Radar Echo Classification Function (ARM-DOE#1495)
Browse files Browse the repository at this point in the history
* ADD: _echo_class_wt.py: RadarEchoClass module with all methods/code from PyREClass.

* ADD:wrapper function for wt_reclass

* REFORMAT: Function names comply with PyART & PEP8 standards.

* REFORMAT: Function names comply with PyART & PEP8 standards.

* Revert "REFORMAT: Function names comply with PyART & PEP8 standards."

This reverts commit 6ce7cc8.

* REFORMAT: Function names comply with PyART & PEP8 standards.

* ADD: masked array, detailed func arguments

* MOD:func user arguments used,class num changed.

* DOC:function and user arguments.

* MOD: added metadata to field dictinery.

* order of classes changed

* cappi level added;better description of calsses

* REFORMAT: PEP8 style

* FORMAT:PEP8

* MOD:sanity check for conv core threshold

* MOD:More sanity check for thresholds

* MOD:Added override to sanity check+documentation

* MOD:minor

* invalid grid raises exception

* first unit test added

* ADD:func make_gaussian_storm_grid

* ADD: test for  output validity

* ADD:utest for results of classification

* ENH: test documentation and apply black formatting

* ENH:small test func  merged;name change

* ADD: Stat-based tests for Gaussian storm grid function

* ADD: example

* FORMAT:Black

* FIX: issues for ARM-DOE#1495 the code review

- aded TypeError handling in `_echo_class_wt.py`
- Left tab docstring in `echo_class.py`
- Added blank line in `_echo_class_wt.py`
- Did not check `reflectivity_to_rainrate` function for duplication
- Spellcheck Done
- Confirmed grid object check in `echo_class.py`
- Added `#noqa` comment in `__init__.py`

* FIX:unused imports andvariables removed

* Removed two line func sum_conv_wavelets();

* minor

* Removed reflectivity_to_rainrate()

* Test PAssed reflectivity_to_rainrate():

* minor:autosummary

* ADD:conv_wavelet_sum()

* Func Renamed: get_reclass -> wavelet_reclas

* Refined documentation and Descriptive user arguments

* FMT: Black

* ENH:Docstring

* DOC:Better description & ordering  of classification categories

* REFACTOR:scale_break now computed in calling function

Moved scale break calculation to calling function, outputting scale_break as a parameter for the user. Adjusted related functions and variables.

* ENH:scale_break is adaptive to resolution

* ENH:atol added, tests default function arguments

* FROMAT:black

* MINOR:corrected tab in docstring

* used new scaling and added description

* MINOR: alignment in docstring

* FORAMT:linting error corrected

* 'LINTING ERR:import-block sorted;extra'()' removed'

Follwing errors are fixed:
pyart/retrieve/_echo_class_wt.py:192:26: UP034 [*] Avoid extraneous parentheses
pyart/retrieve/echo_class.py:6:1: I001 [*] Import block is un-sorted or un-formatted
Found 2 errors.
[*] 2 fixable with the `--fix` option.
Error: Process completed with exit code 1.

* FIX: Fix linting error

* FIX: Fix more linting errors

* DOCS:minor docstrig chages from Zach

* DOCS: testing precommit

---------

Co-authored-by: mgrover1 <[email protected]>
Co-authored-by: Max Grover <[email protected]>
  • Loading branch information
3 people authored Jan 11, 2024
1 parent 0c5017a commit 2051365
Show file tree
Hide file tree
Showing 7 changed files with 1,315 additions and 0 deletions.
605 changes: 605 additions & 0 deletions examples/retrieve/wavelet_echo_class_example.ipynb

Large diffs are not rendered by default.

1 change: 1 addition & 0 deletions pyart/retrieve/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
from .echo_class import get_freq_band # noqa
from .echo_class import hydroclass_semisupervised # noqa
from .echo_class import steiner_conv_strat # noqa
from .echo_class import conv_strat_raut # noqa
from .gate_id import fetch_radar_time_profile, map_profile_to_gates # noqa
from .kdp_proc import kdp_maesaka, kdp_schneebeli, kdp_vulpiani # noqa
from .qpe import est_rain_rate_a # noqa
Expand Down
313 changes: 313 additions & 0 deletions pyart/retrieve/_echo_class_wt.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,313 @@
"""
Classification of Precipitation Echoes in Radar Data.
Created on Thu Oct 12 23:12:19 2017
@author: Bhupendra Raut
@modifed: 11/19/2023
@references: 10.1109/TGRS.2020.2965649
.. autosummary::
wavelet_reclass
label_classes
calc_scale_break
atwt2d
"""


import numpy as np


def wavelet_reclass(
grid,
refl_field,
level,
zr_a,
zr_b,
core_wt_threshold,
conv_wt_threshold,
scale_break,
min_reflectivity,
conv_min_refl,
conv_core_threshold,
):
"""
Compute ATWT described as Raut et al (2008) and classify radar echoes using scheme of Raut et al (2020).
First, convert dBZ to rain rates using standard Z-R relationship or user given coefficients. This is to
transform the normally distributed dBZ to gamma-like distribution, enhancing the structure of the field.
Parameters
----------
dbz_data : ndarray
2D array containing radar data. Last dimension should be levels.
res_km : float
Resolution of the radar data in km
scale_break : int
Calculated scale break between convective and stratiform scales. Dyadically spaced in grid pixels.
Returns
-------
wt_class : ndarray
Precipitation type classification: 0. N/A 1. stratiform/non-convective,
2. convective cores and 3. moderate+transitional (mix) convective
regions.
"""

# Extract grid data, save mask and get the resolution in km
try:
dbz_data = grid.fields[refl_field]["data"][level, :, :]
except:
dbz_data = grid.fields[refl_field]["data"][:, :]

# save the radar original mask for missing data.
radar_mask = np.ma.getmask(dbz_data)

wt_sum = conv_wavelet_sum(dbz_data, zr_a, zr_b, scale_break)

wt_class = label_classes(
wt_sum,
dbz_data,
core_wt_threshold,
conv_wt_threshold,
min_reflectivity,
conv_min_refl,
conv_core_threshold,
)

wt_class_ma = np.ma.masked_where(radar_mask, wt_class) # add mask back
wt_class_ma = wt_class_ma.squeeze()

return wt_class_ma


def conv_wavelet_sum(dbz_data, zr_a, zr_b, scale_break):
"""
Computes the sum of wavelet transform components for convective scales from dBZ data.
Parameters
------------
dbz_data : ndarray
2D array containing radar dBZ data.
zr_a, zr_b : float
Coefficients for the Z-R relationship.
res_km : float
Resolution of the radar data in km.
scale_break : int
Calculated scale break (in pixels) between convective and stratiform scales
Returns
---------
wt_sum : ndarray
Sum of convective scale wavelet transform components.
"""
try:
dbz_data = dbz_data.filled(0)
except Exception:
pass

dbz_data[np.isnan(dbz_data)] = 0
rr_data = ((10.0 ** (dbz_data / 10.0)) / zr_a) ** (1.0 / zr_b)

wt, _ = atwt2d(rr_data, max_scale=scale_break)
wt_sum = np.sum(wt, axis=(0))

return wt_sum


def label_classes(
wt_sum,
dbz_data,
core_wt_threshold,
conv_wt_threshold,
min_reflectivity,
conv_min_refl,
conv_core_threshold,
):
"""
Labels classes using given thresholds:
- 0: No precipitation or unclassified
- 1: Stratiform/non-convective regions
- 2: Transitional and mixed convective regions
- 3: Convective cores
Following hard coded values are optimized and validated using C-band radars
over Darwin, Australia (2.5 km grid spacing) and tested for Solapur, India (1km grid spacing) [Raut et al. 2020].
core_wt_threshold = 5 # WT value more than this is strong convection
conv_wt_threshold = 2 # WT value for moderate convection
min_reflectivity = 10 # pixels below this value are not classified.
conv_min_refl = 30 # pixel below this value are not convective. This works for most cases.
Parameters
-----------
wt_sum : ndarray
Integrated wavelet transform
vol_data : ndarray
Array, vector or matrix of data
Returns
---------
wt_class : ndarray
Precipitation type classification.
"""

# I first used negative numbers to annotate the categories. Then multiply it by -1.
wt_class = np.where(
(wt_sum >= conv_wt_threshold) & (dbz_data >= conv_core_threshold), -3, 0
)
wt_class = np.where(
(wt_sum >= core_wt_threshold) & (dbz_data >= conv_min_refl), -3, 0
)
wt_class = np.where(
(wt_sum < core_wt_threshold)
& (wt_sum >= conv_wt_threshold)
& (dbz_data >= conv_min_refl),
-2,
wt_class,
)
wt_class = np.where((wt_class == 0) & (dbz_data >= min_reflectivity), -1, wt_class)

wt_class = -1 * wt_class
wt_class = np.where((wt_class == 0), np.nan, wt_class)

return wt_class.astype(np.int32)


def calc_scale_break(res_meters, conv_scale_km):
"""
Compute scale break for convection and stratiform regions. WT will be
computed upto this scale and features will be designated as convection.
Parameters
-----------
res_meters : float
resolution of the image.
conv_scale_km : float
expected size of spatial variations due to convection.
Returns
--------
dyadic scale break : int
integer scale break in dyadic scale.
"""
res_km = res_meters / 1000
scale_break = np.log(conv_scale_km / res_km) / np.log(2) + 1

return int(round(scale_break))


def atwt2d(data2d, max_scale=-1):
"""
Computes a trous wavelet transform (ATWT). Computes ATWT of the 2D array
up to max_scale. If max_scale is outside the boundaries, number of scales
will be reduced.
Data is mirrored at the boundaries. 'Negative WT are removed. Not tested
for non-square data.
@authors: Bhupendra A. Raut and Dileep M. Puranik
@references: Press et al. (1992) Numerical Recipes in C.
Parameters
-----------
data2d : ndarray
2D image as array or matrix.
max_scale :
Computes wavelets up to max_scale. Leave blank for maximum possible
scales.
Returns
---------
tuple of ndarray
ATWT of input image and the final smoothed image or background image.
"""

if not isinstance(data2d, np.ndarray):
raise TypeError("The input data2d must be a numpy array.")

data2d = data2d.squeeze()

dims = data2d.shape
min_dims = np.min(dims)
max_possible_scales = int(np.floor(np.log(min_dims) / np.log(2)))

if max_scale < 0 or max_possible_scales <= max_scale:
max_scale = max_possible_scales - 1

ny = dims[0]
nx = dims[1]

# For saving wt components
wt = np.zeros((max_scale, ny, nx))

temp1 = np.zeros(dims)
temp2 = np.zeros(dims)

sf = (0.0625, 0.25, 0.375) # scaling function

# start wavelet loop
for scale in range(1, max_scale + 1):
# print(scale)
x1 = 2 ** (scale - 1)
x2 = 2 * x1

# Row-wise smoothing
for i in range(0, nx):
# find the indices for prev and next points on the line
prev2 = abs(i - x2)
prev1 = abs(i - x1)
next1 = i + x1
next2 = i + x2

# If these indices are outside the image, "mirror" them
# Sometime this causes issues at higher scales.
if next1 > nx - 1:
next1 = 2 * (nx - 1) - next1

if next2 > nx - 1:
next2 = 2 * (nx - 1) - next2

if prev1 < 0 or prev2 < 0:
prev1 = next1
prev2 = next2

for j in range(0, ny):
left2 = data2d[j, prev2]
left1 = data2d[j, prev1]
right1 = data2d[j, next1]
right2 = data2d[j, next2]
temp1[j, i] = (
sf[0] * (left2 + right2)
+ sf[1] * (left1 + right1)
+ sf[2] * data2d[j, i]
)

# Column-wise smoothing
for i in range(0, ny):
prev2 = abs(i - x2)
prev1 = abs(i - x1)
next1 = i + x1
next2 = i + x2

# If these indices are outside the image use next values
if next1 > ny - 1:
next1 = 2 * (ny - 1) - next1
if next2 > ny - 1:
next2 = 2 * (ny - 1) - next2
if prev1 < 0 or prev2 < 0:
prev1 = next1
prev2 = next2

for j in range(0, nx):
top2 = temp1[prev2, j]
top1 = temp1[prev1, j]
bottom1 = temp1[next1, j]
bottom2 = temp1[next2, j]
temp2[i, j] = (
sf[0] * (top2 + bottom2)
+ sf[1] * (top1 + bottom1)
+ sf[2] * temp1[i, j]
)

wt[scale - 1, :, :] = data2d - temp2
data2d[:] = temp2

return wt, data2d
Loading

0 comments on commit 2051365

Please sign in to comment.