Skip to content

Commit

Permalink
generalize interior_itv
Browse files Browse the repository at this point in the history
  • Loading branch information
IshiguroYoshihiro authored and affeldt-aist committed Jan 19, 2025
1 parent 2a18c7e commit dd3557e
Show file tree
Hide file tree
Showing 3 changed files with 38 additions and 12 deletions.
18 changes: 13 additions & 5 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,14 +30,22 @@
- in `classical_sets.v`:
+ lemmas `xsectionE`, `ysectionE`

- in `topology_theory/topological_structure.v`
+ lemmas `interiorT`, `interior0`

- in `normedtype.v`:
+ lemmas `interior_itv_bnd`, `interior_itv_bndy`, `interior_itv_Nybnd`,
definition `interior_itv`
+ lemma `interior_set1`
+ lemmas `interior_itv_bnd`, `interior_itv_bndy`, `interior_itv_Nybnd`, `interior_itv_Nyy`
+ definition `interior_itv`

- in `derive.v`:
+ lemmas `decr_derive1_le0`, `decr_derive1_le0_itv`
+ lemmas `ler0_derive1_nincry`, `le0r_derive1_ndecry`

+ lemmas `decr_derive1_le0`, `decr_derive1_le0_itv`,
`decr_derive1_le0_itvy`, `decr_derive1_le0_itvNy`,
`incr_derive1_ge0`, `incr_derive1_ge0_itv`,
`incr_derive1_ge0_itvy`, `incr_derive1_ge0_itvNy`,
+ lemmas `ler0_derive1_nincry`, `le0r_derive1_ndecry`,
`ler0_derive1_nincrNy`, `le0r_derive1_ndecrNy`

### Changed

- in `lebesgue_integrale.v`
Expand Down
26 changes: 19 additions & 7 deletions theories/normedtype.v
Original file line number Diff line number Diff line change
Expand Up @@ -4761,10 +4761,25 @@ have /sup_adherent/(_ hsX)[f Xf] : 0 < sup X - r by rewrite subr_gt0.
by rewrite subKr => rf; apply: (iX e f); rewrite ?ltW.
Qed.

Lemma interior_itv_bnd (x y : R) (a b : bool) : x < y ->
Lemma interior_set1 (a : R) : [set a]^° = set0.
Proof.
rewrite interval_bounded_interior; first last.
- by exists a => [?]/= ->; apply: lexx.
- by exists a => [?]/= ->; apply: lexx.
- by move=> ? ?/= -> -> r; rewrite -eq_le; move/eqP <-.
- rewrite inf1 sup1 eqEsubset; split => // => x/=.
by rewrite ltNge => /andP[/negP + ?]; apply; apply/ltW.
Qed.

Lemma interior_itv_bnd (x y : R) (a b : bool) :
[set` Interval (BSide a x) (BSide b y)]^° = `]x, y[%classic.
Proof.
move=> xy.
have [|xy] := leP y x.
rewrite le_eqVlt => /predU1P[-> |yx].
by case: a; case: b; rewrite set_itvoo0 ?set_itvE ?interior_set1 ?interior0.
rewrite !set_itv_ge ?interior0//.
- by rewrite bnd_simp -leNgt ltW.
- by case: a; case: b; rewrite bnd_simp -?leNgt -?ltNge ?ltW.
rewrite interval_bounded_interior//; last exact: interval_is_interval.
rewrite inf_itv; last by case: a; case b; rewrite bnd_simp ?ltW.
rewrite sup_itv; last by case: a; case b; rewrite bnd_simp ?ltW.
Expand Down Expand Up @@ -4793,13 +4808,10 @@ Qed.

Lemma interior_itv_Nyy :
[set` Interval (BInfty R true) (BInfty _ false)]^° = `]-oo, +oo[%classic.
Proof.
rewrite set_itv_infty_infty.
exact: interiorT.
Qed.
Proof. by rewrite set_itv_infty_infty; apply: interiorT. Qed.

Definition interior_itv :=
(interior_itv_bnd, interior_itv_bndy, interior_itv_Nybnd).
(interior_itv_bnd, interior_itv_bndy, interior_itv_Nybnd, interior_itv_Nyy).

Definition Rhull (X : set R) : interval R := Interval
(if `[< has_lbound X >] then BSide `[< X (inf X) >] (inf X)
Expand Down
6 changes: 6 additions & 0 deletions theories/topology_theory/topology_structure.v
Original file line number Diff line number Diff line change
Expand Up @@ -230,6 +230,12 @@ rewrite eqEsubset; split; first exact: interior_subset.
by rewrite -open_subsetE//; apply: openT.
Qed.

Lemma interior0 : (@set0 T)^° = set0.
Proof.
rewrite eqEsubset; split; first exact: interior_subset.
rewrite -open_subsetE//; apply: open0.
Qed.

End Topological1.

Lemma open_in_nearW {T : topologicalType} (P : T -> Prop) (S : set T) :
Expand Down

0 comments on commit dd3557e

Please sign in to comment.