Skip to content

Commit

Permalink
Write down the fact that Ξ£-resizing gives that 𝓀₀ is 𝓀₀-small
Browse files Browse the repository at this point in the history
  • Loading branch information
ayberkt committed May 21, 2024
1 parent 06ea5b0 commit 5dd3d65
Showing 1 changed file with 25 additions and 1 deletion.
26 changes: 25 additions & 1 deletion source/UF/SystemFNotionOfResizing.lagda
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ module UF.SystemFNotionOfResizing
open import InjectiveTypes.Resizing
open import MLTT.Spartan
open import UF.Equiv
open import UF.EquivalenceExamples
open import UF.Logic
open import UF.NotNotStablePropositions
open import UF.Retracts
Expand Down Expand Up @@ -296,13 +297,36 @@ It follows easily from this then `ꪪ 𝓀₀` is equivalent to `ꪪ 𝓀

\end{code}

One could also consider Ξ£-resizing, but we do not know if it is consistent or not.
One might be tempted to consider Ξ£-resizing, but this immediately gives that 𝓀₀
is 𝓀₀-small (thanks to Jon Sterling who pointed this out in a code review).

\begin{code}

Ξ£-Resizing : 𝓀₂ Μ‡
Ξ£-Resizing = (A : 𝓀₁ Μ‡) β†’ (B : A β†’ 𝓀₀ Μ‡) β†’ (Ξ£ x κž‰ A , B x) is 𝓀₀ small

Ξ£-resizing-gives-𝓀₀-is-𝓀₀-small : Ξ£-Resizing β†’ (𝓀₀ Μ‡) is 𝓀₀ small
Ξ£-resizing-gives-𝓀₀-is-𝓀₀-small ψ = resized ((𝓀₀ Μ‡) Γ— πŸ™ {𝓀₀}) † , e
where
† : ((𝓀₀ Μ‡) Γ— πŸ™ {𝓀₀}) is 𝓀₀ small
† = ψ (𝓀₀ Μ‡) (Ξ» _ β†’ πŸ™ {𝓀₀})

β…  : resized ((𝓀₀ Μ‡) Γ— πŸ™ {𝓀₀}) † ≃ (𝓀₀ Μ‡) Γ— πŸ™ {𝓀₀}
β…  = resizing-condition †

s : resized ((𝓀₀ Μ‡) Γ— πŸ™ {𝓀₀}) † β†’ 𝓀₀ Μ‡
s = pr₁ ∘ ⌜ β…  ⌝

r : 𝓀₀ Μ‡ β†’ resized ((𝓀₀ Μ‡) Γ— πŸ™ {𝓀₀}) †
r A = ⌜ ≃-sym β…  ⌝ (A , ⋆)

e : resized ((𝓀₀ Μ‡) Γ— πŸ™ {𝓀₀}) † ≃ 𝓀₀ Μ‡
e = resized ((𝓀₀ Μ‡) Γ— πŸ™ {𝓀₀}) † β‰ƒβŸ¨ β…  ⟩
(𝓀₀ Μ‡) Γ— πŸ™ {𝓀₀} β‰ƒβŸ¨ β…‘ ⟩
𝓀₀ Μ‡ β– 
where
β…‘ = πŸ™-rneutral {𝓀₁} {𝓀₀} {Y = (𝓀₀ Μ‡)}

\end{code}

The version of this notion of resizing with truncation, which we denote
Expand Down

0 comments on commit 5dd3d65

Please sign in to comment.