-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add external FID embedding net implementation (from pytorch_fid)
- Loading branch information
1 parent
de0dca9
commit 40aa8f7
Showing
1 changed file
with
358 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,358 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torchvision | ||
|
||
try: | ||
from torchvision.models.utils import load_state_dict_from_url | ||
except ImportError: | ||
from torch.utils.model_zoo import load_url as load_state_dict_from_url | ||
|
||
# Inception weights ported to Pytorch from | ||
# http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz | ||
FID_WEIGHTS_URL = "https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth" # noqa: E501 | ||
|
||
|
||
def get_inception_v3_activations(model, images): | ||
""" | ||
Get activations from the InceptionV3 model for the given images. | ||
Args: | ||
model (torch.nn.Module): The InceptionV3 model. | ||
images (torch.Tensor): The images for which to compute the activations. | ||
Returns: | ||
list: A list of torch.Tensor containing the activations from the model. | ||
""" | ||
|
||
with torch.no_grad(): | ||
pred = model(images)[0] | ||
|
||
# print(pred) | ||
pred = pred.squeeze(3).squeeze(2).cpu() | ||
return pred | ||
|
||
|
||
class InceptionV3(nn.Module): | ||
"""Pretrained InceptionV3 network returning feature maps""" | ||
|
||
# Index of default block of inception to return, | ||
# corresponds to output of final average pooling | ||
DEFAULT_BLOCK_INDEX = 3 | ||
|
||
# Maps feature dimensionality to their output blocks indices | ||
BLOCK_INDEX_BY_DIM = { | ||
64: 0, # First max pooling features | ||
192: 1, # Second max pooling featurs | ||
768: 2, # Pre-aux classifier features | ||
2048: 3, # Final average pooling features | ||
} | ||
|
||
def __init__( | ||
self, | ||
output_blocks=(DEFAULT_BLOCK_INDEX,), | ||
resize_input=True, | ||
normalize_input=True, | ||
requires_grad=False, | ||
use_fid_inception=True, | ||
): | ||
"""Build pretrained InceptionV3 | ||
Parameters | ||
---------- | ||
output_blocks : list of int | ||
Indices of blocks to return features of. Possible values are: | ||
- 0: corresponds to output of first max pooling | ||
- 1: corresponds to output of second max pooling | ||
- 2: corresponds to output which is fed to aux classifier | ||
- 3: corresponds to output of final average pooling | ||
resize_input : bool | ||
If true, bilinearly resizes input to width and height 299 before | ||
feeding input to model. As the network without fully connected | ||
layers is fully convolutional, it should be able to handle inputs | ||
of arbitrary size, so resizing might not be strictly needed | ||
normalize_input : bool | ||
If true, scales the input from range (0, 1) to the range the | ||
pretrained Inception network expects, namely (-1, 1) | ||
requires_grad : bool | ||
If true, parameters of the model require gradients. Possibly useful | ||
for finetuning the network | ||
use_fid_inception : bool | ||
If true, uses the pretrained Inception model used in Tensorflow's | ||
FID implementation. If false, uses the pretrained Inception model | ||
available in torchvision. The FID Inception model has different | ||
weights and a slightly different structure from torchvision's | ||
Inception model. If you want to compute FID scores, you are | ||
strongly advised to set this parameter to true to get comparable | ||
results. | ||
""" | ||
super(InceptionV3, self).__init__() | ||
|
||
self.resize_input = resize_input | ||
self.normalize_input = normalize_input | ||
self.output_blocks = sorted(output_blocks) | ||
self.last_needed_block = max(output_blocks) | ||
|
||
assert self.last_needed_block <= 3, "Last possible output block index is 3" | ||
|
||
self.blocks = nn.ModuleList() | ||
|
||
if use_fid_inception: | ||
inception = fid_inception_v3() | ||
else: | ||
inception = _inception_v3(weights="DEFAULT") | ||
|
||
# Block 0: input to maxpool1 | ||
block0 = [ | ||
inception.Conv2d_1a_3x3, | ||
inception.Conv2d_2a_3x3, | ||
inception.Conv2d_2b_3x3, | ||
nn.MaxPool2d(kernel_size=3, stride=2), | ||
] | ||
self.blocks.append(nn.Sequential(*block0)) | ||
|
||
# Block 1: maxpool1 to maxpool2 | ||
if self.last_needed_block >= 1: | ||
block1 = [ | ||
inception.Conv2d_3b_1x1, | ||
inception.Conv2d_4a_3x3, | ||
nn.MaxPool2d(kernel_size=3, stride=2), | ||
] | ||
self.blocks.append(nn.Sequential(*block1)) | ||
|
||
# Block 2: maxpool2 to aux classifier | ||
if self.last_needed_block >= 2: | ||
block2 = [ | ||
inception.Mixed_5b, | ||
inception.Mixed_5c, | ||
inception.Mixed_5d, | ||
inception.Mixed_6a, | ||
inception.Mixed_6b, | ||
inception.Mixed_6c, | ||
inception.Mixed_6d, | ||
inception.Mixed_6e, | ||
] | ||
self.blocks.append(nn.Sequential(*block2)) | ||
|
||
# Block 3: aux classifier to final avgpool | ||
if self.last_needed_block >= 3: | ||
block3 = [ | ||
inception.Mixed_7a, | ||
inception.Mixed_7b, | ||
inception.Mixed_7c, | ||
nn.AdaptiveAvgPool2d(output_size=(1, 1)), | ||
] | ||
self.blocks.append(nn.Sequential(*block3)) | ||
|
||
for param in self.parameters(): | ||
param.requires_grad = requires_grad | ||
|
||
def forward(self, inp): | ||
"""Get Inception feature maps | ||
Parameters | ||
---------- | ||
inp : torch.autograd.Variable | ||
Input tensor of shape Bx3xHxW. Values are expected to be in | ||
range (0, 1) | ||
Returns | ||
------- | ||
List of torch.autograd.Variable, corresponding to the selected output | ||
block, sorted ascending by index | ||
""" | ||
outp = [] | ||
x = inp | ||
|
||
if self.resize_input: | ||
x = F.interpolate(x, size=(299, 299), mode="bilinear", align_corners=False) | ||
|
||
if self.normalize_input: | ||
x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1) | ||
|
||
for idx, block in enumerate(self.blocks): | ||
x = block(x) | ||
if idx in self.output_blocks: | ||
outp.append(x) | ||
|
||
if idx == self.last_needed_block: | ||
break | ||
|
||
return outp | ||
|
||
|
||
def _inception_v3(*args, **kwargs): | ||
"""Wraps `torchvision.models.inception_v3`""" | ||
try: | ||
version = tuple(map(int, torchvision.__version__.split(".")[:2])) | ||
except ValueError: | ||
# Just a caution against weird version strings | ||
version = (0,) | ||
|
||
# Skips default weight inititialization if supported by torchvision | ||
# version. See https://github.com/mseitzer/pytorch-fid/issues/28. | ||
if version >= (0, 6): | ||
kwargs["init_weights"] = False | ||
|
||
# Backwards compatibility: `weights` argument was handled by `pretrained` | ||
# argument prior to version 0.13. | ||
if version < (0, 13) and "weights" in kwargs: | ||
if kwargs["weights"] == "DEFAULT": | ||
kwargs["pretrained"] = True | ||
elif kwargs["weights"] is None: | ||
kwargs["pretrained"] = False | ||
else: | ||
raise ValueError( | ||
"weights=={} not supported in torchvision {}".format( | ||
kwargs["weights"], torchvision.__version__ | ||
) | ||
) | ||
del kwargs["weights"] | ||
|
||
return torchvision.models.inception_v3(*args, **kwargs) | ||
|
||
|
||
def fid_inception_v3(): | ||
"""Build pretrained Inception model for FID computation | ||
The Inception model for FID computation uses a different set of weights | ||
and has a slightly different structure than torchvision's Inception. | ||
This method first constructs torchvision's Inception and then patches the | ||
necessary parts that are different in the FID Inception model. | ||
""" | ||
inception = _inception_v3(num_classes=1008, aux_logits=False, weights=None) | ||
inception.Mixed_5b = FIDInceptionA(192, pool_features=32) | ||
inception.Mixed_5c = FIDInceptionA(256, pool_features=64) | ||
inception.Mixed_5d = FIDInceptionA(288, pool_features=64) | ||
inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128) | ||
inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160) | ||
inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160) | ||
inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192) | ||
inception.Mixed_7b = FIDInceptionE_1(1280) | ||
inception.Mixed_7c = FIDInceptionE_2(2048) | ||
|
||
state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True) | ||
inception.load_state_dict(state_dict) | ||
return inception | ||
|
||
|
||
class FIDInceptionA(torchvision.models.inception.InceptionA): | ||
"""InceptionA block patched for FID computation""" | ||
|
||
def __init__(self, in_channels, pool_features): | ||
super(FIDInceptionA, self).__init__(in_channels, pool_features) | ||
|
||
def forward(self, x): | ||
branch1x1 = self.branch1x1(x) | ||
|
||
branch5x5 = self.branch5x5_1(x) | ||
branch5x5 = self.branch5x5_2(branch5x5) | ||
|
||
branch3x3dbl = self.branch3x3dbl_1(x) | ||
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) | ||
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) | ||
|
||
# Patch: Tensorflow's average pool does not use the padded zero's in | ||
# its average calculation | ||
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) | ||
branch_pool = self.branch_pool(branch_pool) | ||
|
||
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] | ||
return torch.cat(outputs, 1) | ||
|
||
|
||
class FIDInceptionC(torchvision.models.inception.InceptionC): | ||
"""InceptionC block patched for FID computation""" | ||
|
||
def __init__(self, in_channels, channels_7x7): | ||
super(FIDInceptionC, self).__init__(in_channels, channels_7x7) | ||
|
||
def forward(self, x): | ||
branch1x1 = self.branch1x1(x) | ||
|
||
branch7x7 = self.branch7x7_1(x) | ||
branch7x7 = self.branch7x7_2(branch7x7) | ||
branch7x7 = self.branch7x7_3(branch7x7) | ||
|
||
branch7x7dbl = self.branch7x7dbl_1(x) | ||
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) | ||
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) | ||
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) | ||
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) | ||
|
||
# Patch: Tensorflow's average pool does not use the padded zero's in | ||
# its average calculation | ||
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) | ||
branch_pool = self.branch_pool(branch_pool) | ||
|
||
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] | ||
return torch.cat(outputs, 1) | ||
|
||
|
||
class FIDInceptionE_1(torchvision.models.inception.InceptionE): | ||
"""First InceptionE block patched for FID computation""" | ||
|
||
def __init__(self, in_channels): | ||
super(FIDInceptionE_1, self).__init__(in_channels) | ||
|
||
def forward(self, x): | ||
branch1x1 = self.branch1x1(x) | ||
|
||
branch3x3 = self.branch3x3_1(x) | ||
branch3x3 = [ | ||
self.branch3x3_2a(branch3x3), | ||
self.branch3x3_2b(branch3x3), | ||
] | ||
branch3x3 = torch.cat(branch3x3, 1) | ||
|
||
branch3x3dbl = self.branch3x3dbl_1(x) | ||
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) | ||
branch3x3dbl = [ | ||
self.branch3x3dbl_3a(branch3x3dbl), | ||
self.branch3x3dbl_3b(branch3x3dbl), | ||
] | ||
branch3x3dbl = torch.cat(branch3x3dbl, 1) | ||
|
||
# Patch: Tensorflow's average pool does not use the padded zero's in | ||
# its average calculation | ||
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) | ||
branch_pool = self.branch_pool(branch_pool) | ||
|
||
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] | ||
return torch.cat(outputs, 1) | ||
|
||
|
||
class FIDInceptionE_2(torchvision.models.inception.InceptionE): | ||
"""Second InceptionE block patched for FID computation""" | ||
|
||
def __init__(self, in_channels): | ||
super(FIDInceptionE_2, self).__init__(in_channels) | ||
|
||
def forward(self, x): | ||
branch1x1 = self.branch1x1(x) | ||
|
||
branch3x3 = self.branch3x3_1(x) | ||
branch3x3 = [ | ||
self.branch3x3_2a(branch3x3), | ||
self.branch3x3_2b(branch3x3), | ||
] | ||
branch3x3 = torch.cat(branch3x3, 1) | ||
|
||
branch3x3dbl = self.branch3x3dbl_1(x) | ||
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) | ||
branch3x3dbl = [ | ||
self.branch3x3dbl_3a(branch3x3dbl), | ||
self.branch3x3dbl_3b(branch3x3dbl), | ||
] | ||
branch3x3dbl = torch.cat(branch3x3dbl, 1) | ||
|
||
# Patch: The FID Inception model uses max pooling instead of average | ||
# pooling. This is likely an error in this specific Inception | ||
# implementation, as other Inception models use average pooling here | ||
# (which matches the description in the paper). | ||
branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1) | ||
branch_pool = self.branch_pool(branch_pool) | ||
|
||
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] | ||
return torch.cat(outputs, 1) |