-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathree_eval.py
204 lines (163 loc) · 8.32 KB
/
ree_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import numpy as np
import re
import string
import json
import argparse
from scipy.optimize import linear_sum_assignment # https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.linear_sum_assignment.html
from collections import OrderedDict
tag2role = OrderedDict({'perp_individual_id': "PerpInd", 'perp_organization_id': "PerpOrg", 'phys_tgt_id': "Target", 'hum_tgt_name': "Victim", 'incident_instrument_id': "Weapon"})
def f1(p_num, p_den, r_num, r_den, beta=1):
p = 0 if p_den == 0 else p_num / float(p_den)
r = 0 if r_den == 0 else r_num / float(r_den)
return 0 if p + r == 0 else (1 + beta * beta) * p * r / (beta * beta * p + r)
def phi_strict(c1, c2):
for m in c2:
if m not in c1:
return 0
return 1
def phi_prop(c1, c2):
# # similarity: len(overlap of c2 (pred) and c1 (gold)) / len(c2)
print([m for m in c1 if m in c2])
print(len([m for m in c1 if m in c2]))
return len([m for m in c1 if m in c2]) / len(c2)
def ceaf(clusters, gold_clusters, phi_similarity):
# !!! need to comment the next line, the conll-2012 eval ignore singletons
# clusters = [c for c in clusters if len(c) != 1]
scores = np.zeros((len(gold_clusters), len(clusters)))
for i in range(len(gold_clusters)):
for j in range(len(clusters)):
scores[i, j] = phi_similarity(gold_clusters[i], clusters[j])#
# matching = linear_assignment(-scores) # [deprecated] linear_assignment from sklearn
# similarity = sum(scores[matching[:, 0], matching[:, 1]])
row_ind, col_ind = linear_sum_assignment(-scores)
similarity = sum(scores[row_ind, col_ind])
return similarity, len(clusters), similarity, len(gold_clusters)
def eval_ceaf_base(preds, golds, phi_similarity, docids=[]):
result = OrderedDict()
all_keys = list(role for _, role in tag2role.items()) + ["micro_avg"]
for key in all_keys:
result[key] = {"p_num": 0, "p_den": 0, "r_num": 0, "r_den": 0, "p": 0, "r": 0, "f1": 0}
if not docids:
for docid in golds:
docids.append(docid)
for docid in docids:
pred = preds[docid]
gold = golds[docid]
for role in gold:
pred_clusters = []
gold_clusters = []
for entity in gold[role]:
gold_c = []
for mention in entity:
gold_c.append(mention)
gold_clusters.append(gold_c)
for entity in pred[role]:
pred_c = []
for mention in entity:
pred_c.append(mention)
pred_clusters.append(pred_c)
pn, pd, rn, rd = ceaf(pred_clusters, gold_clusters, phi_similarity)
result[role]["p_num"] += pn
result[role]["p_den"] += pd
result[role]["r_num"] += rn
result[role]["r_den"] += rd
result["micro_avg"]["p_num"] = sum(result[role]["p_num"] for _, role in tag2role.items())
result["micro_avg"]["p_den"] = sum(result[role]["p_den"] for _, role in tag2role.items())
result["micro_avg"]["r_num"] = sum(result[role]["r_num"] for _, role in tag2role.items())
result["micro_avg"]["r_den"] = sum(result[role]["r_den"] for _, role in tag2role.items())
for key in all_keys:
result[key]["p"] = 0 if result[key]["p_num"] == 0 else result[key]["p_num"] / float(result[key]["p_den"])
result[key]["r"] = 0 if result[key]["r_num"] == 0 else result[key]["r_num"] / float(result[key]["r_den"])
result[key]["f1"] = f1(result[key]["p_num"], result[key]["p_den"], result[key]["r_num"], result[key]["r_den"])
return result
def normalize_string(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
regex = re.compile(r'\b(a|an|the)\b', re.UNICODE)
return re.sub(regex, ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def eval_ceaf(preds, golds, docids=[]):
# normalization mention strings
for docid in preds:
for role in preds[docid]:
for idx in range(len(preds[docid][role])):
for idy in range(len(preds[docid][role][idx])):
preds[docid][role][idx][idy] = normalize_string(preds[docid][role][idx][idy])#'guerrillas'
for docid in golds:
for role in golds[docid]:
for idx in range(len(golds[docid][role])):
for idy in range(len(golds[docid][role][idx])):
golds[docid][role][idx][idy] = normalize_string(golds[docid][role][idx][idy])
results_strict = eval_ceaf_base(preds, golds, phi_strict, docids)
results_prop = eval_ceaf_base(preds, golds, phi_prop, docids)
final_results = OrderedDict()
final_results["strict"] = results_strict
final_results["prop"] = results_prop
return final_results
def ree_eval(preds: dict, golds: dict):
docids = []
results = eval_ceaf(preds, golds, docids)
all_keys = list(role for _, role in tag2role.items()) + ["micro_avg"]
str_print = []
for key in all_keys:
if key == "micro_avg":
print("***************** {} *****************".format(key))
else:
print("================= {} =================".format(key))
str_print += [results["strict"][key]["p"] * 100, results["strict"][key]["r"] * 100, results["strict"][key]["f1"] * 100]
print("P: {:.2f}%, R: {:.2f}%, F1: {:.2f}%".format(results["strict"][key]["p"] * 100, results["strict"][key]["r"] * 100, results["strict"][key]["f1"] * 100)) # phi_strict
# print("phi_prop: P: {:.2f}%, R: {:.2f}%, F1: {:.2f}%".format(results["prop"][key]["p"] * 100, results["prop"][key]["r"] * 100, results["prop"][key]["f1"] * 100))
print()
str_print= ["{:.2f}".format(r) for r in str_print]
print("print: {}".format(" ".join(str_print)))
return results['strict'] #['micro_avg']['f1']
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pred_file", default=None, type=str, required=False, help="preds output file")
parser.add_argument("--gold_file", default="./data/muc/processed/test.json", type=str, required=False, help="gold file")
args = parser.parse_args()
## get pred and gold extracts
preds = OrderedDict()
golds = OrderedDict()
with open(args.pred_file, encoding="utf-8") as f:
out_dict = json.load(f)
for docid in out_dict:
preds[docid] = out_dict[docid]["pred_extracts"]
with open(args.gold_file, encoding="utf-8") as f:
for line in f:
line = json.loads(line)
docid = str(int(line["docid"].split("-")[0][-1])*10000 + int(line["docid"].split("-")[-1]))
extracts_raw = line["extracts"]
extracts = OrderedDict()
for role, entitys_raw in extracts_raw.items():
extracts[role] = []
for entity_raw in entitys_raw:
entity = []
for mention_offset_pair in entity_raw:
entity.append(mention_offset_pair[0])
if entity:
extracts[role].append(entity)
golds[docid] = extracts
# import ipdb; ipdb.set_trace()
docids = []
results = eval_ceaf(preds, golds, docids)
all_keys = list(role for _, role in tag2role.items()) + ["micro_avg"]
str_print = []
for key in all_keys:
if key == "micro_avg":
print("***************** {} *****************".format(key))
else:
print("================= {} =================".format(key))
str_print += [results["strict"][key]["p"] * 100, results["strict"][key]["r"] * 100, results["strict"][key]["f1"] * 100]
print("P: {:.2f}%, R: {:.2f}%, F1: {:.2f}%".format(results["strict"][key]["p"] * 100, results["strict"][key]["r"] * 100, results["strict"][key]["f1"] * 100)) # phi_strict
# print("phi_prop: P: {:.2f}%, R: {:.2f}%, F1: {:.2f}%".format(results["prop"][key]["p"] * 100, results["prop"][key]["r"] * 100, results["prop"][key]["f1"] * 100))
print()
str_print= ["{:.2f}".format(r) for r in str_print]
print("print: {}".format(" ".join(str_print)))