-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
246 lines (215 loc) · 11.3 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from torch.utils.data import Dataset
from constants import *
from collections import namedtuple
from util import token2sub_tokens
from sentence_transformers import SentenceTransformer, util
import json
import torch
from transformers import BartModel
import random
import re
from random import sample
import numpy as np
import os
instance_fields = [
'doc_id', 'input_ids', 'attention_mask','decoder_input_chunks', 'input_tokens','document'
]
batch_fields = [
'doc_ids', 'input_ids', 'attention_masks','decoder_input_chunks', 'input_tokens','document'
]
Instance = namedtuple('Instance', field_names=instance_fields,
defaults=[None] * len(instance_fields))
Batch = namedtuple('Batch', field_names=batch_fields,
defaults=[None] * len(batch_fields))
class IEDataset(Dataset):
def __init__(self, config, path, tokenizer, max_length=128, gpu=False):
"""
:param path (str): path to the data file.
:param max_length (int): max sentence length.
:param gpu (bool): use GPU (default=False).
:param ignore_title (bool): Ignore sentences that are titles (default=False).
"""
self.config = config
self.path = path
self.retrieval_data = []
self.data = []
self.max_length = max_length
self.gpu = gpu
# self.sim_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
self.sim_model = SentenceTransformer("./sim_model")
self.load_data(tokenizer)
def __len__(self):
return len(self.data)
def __getitem__(self, item):
return self.data[item]
def load_data(self, tokenizer):
"""Load data from file."""
overlength_num = title_num = 0
with open(self.config.retrieval_file, 'r', encoding='utf-8') as r:
self.retrieval_data = json.loads(r.read())
input_document_emb_train = []
decoder_input_chunks_tokenized_train = []
if config.task == "ree":
for doc_id, content in self.data.items():
annotation = content['annotation']
decoder_input_chunks = self.create_decoder_input_chunks(annotation, tokenizer)
input_document_emb_train.append(
torch.from_numpy(self.sim_model.encode(content['document'], show_progress_bar=False)))
decoder_input_chunks_tokenized_train.append(decoder_input_chunks)
elif config.task == "tf":
for doc_id, content in self.retrieval_data.items():
type_to_event = dict()
annotation = content['annotation']
for event in annotation:
event_type = event["incident_type"]
type_to_event[event_type] = []
type_to_event[event_type].append(event)#将事件添加到对应的事件类型
for event_type in type_to_event.keys():
decoder_input_chunks = self.create_decoder_input_chunks(type_to_event[event_type], tokenizer)
input_document_emb_train.append(torch.from_numpy(self.sim_model.encode(content['document'], show_progress_bar=False)))
decoder_input_chunks_tokenized_train.append(decoder_input_chunks)#对训练集中包含的事件类型进行编码
if annotation == []:
input_document_emb_train.append(torch.from_numpy(self.sim_model.encode(content['document'], show_progress_bar=False)))
decoder_input_chunks_tokenized_train.append([])
with open(self.path, 'r', encoding='utf-8') as r:
self.data = json.loads(r.read())
_data = []
data = []
all_data = []
test_sim = {}
types = {'attack': 'attack', 'kidnapping': 'kidnapping', 'bombing': 'bombing', 'robbery': 'robbery',
'arson': 'arson', 'forced work stoppage': 'forced work stoppage'}
###
for doc_id, content in self.data.items():
if config.task == "ree":
annotation = content['annotation']
decoder_input_chunks = self.create_decoder_input_chunks(annotation, tokenizer)
decoder_input = tokenizer.decode(decoder_input_chunks)
input_document_emb = torch.from_numpy(
self.sim_model.encode(content['document'], show_progress_bar=False))
elif config.task == "tf":
annotation = content['annotation']
type_to_event = dict()
for per_event_type in types:
type_to_event[per_event_type] = []#
for per_event_type in types:
for per_event in annotation:
if per_event["incident_type"] == per_event_type:
type_to_event[per_event_type].append(per_event)#
for per_event_type in type_to_event.keys():
decoder_input_chunks = self.create_decoder_input_chunks(type_to_event[per_event_type], tokenizer)
###
input_document_emb = torch.from_numpy(self.sim_model.encode(content['document'], show_progress_bar=False))
if len(self.data) == 1300:
most_sim = util.semantic_search([input_document_emb], input_document_emb_train, top_k=2)[0][1]
else:
most_sim = util.semantic_search([input_document_emb], input_document_emb_train, top_k=2)[0][0]
most_sim_idx = most_sim['corpus_id']
most_sim_out_template = decoder_input_chunks_tokenized_train[most_sim_idx]
most_sim_out_template = tokenizer.decode(most_sim_out_template)
document = ''.join(most_sim_out_template) + content['document']# w/o prompt template
if config.task == "ree":
document = "<PerpInd> [None] </PerpInd><PerpOrg> [None] </PerpOrg><Target> [None] </Target><Victim> [None] </Victim><Weapon> [None] </Weapon>" + document
elif config.task == "tf":
document = "<SEP> " + per_event_type + " </SEP>" + document
input_ids = tokenizer([document], max_length=self.max_length, truncation=True)['input_ids'][0]
pad_num = self.max_length - len(input_ids)
attn_mask = [1] * len(input_ids) + [0] * pad_num
input_ids = input_ids + [tokenizer.pad_token_id] * pad_num
input_tokens = tokenizer.decode(input_ids)
instance = Instance(
doc_id=doc_id,
input_ids=input_ids,
attention_mask=attn_mask,
decoder_input_chunks=decoder_input_chunks,
input_tokens=input_tokens,
document=document
)
if config.task == "ree":
data.append(instance)
elif config.task == "tf":
all_data.append(instance)
if len(self.data) == 1300:
neg = []
pos = []
for per_type_event in all_data:
if per_type_event.decoder_input_chunks == []:
neg.append(per_type_event)
else:
pos.append(per_type_event)
np.random.shuffle(neg)
_data.append(pos)
_data.append(neg[:3])
else:
_data.append(all_data)
for example in _data:#
for x in example:
data.append(x)
self.data = data#
def create_decoder_input_chunks(self, templates, tokenizer):
res = []
if config.task == "ree":
for template in templates:
current_template_chunk = []
entity_tokens = []
filler = (
f" {AND} ".join([m[0] for m in template['PerpInd']]) if "PerpInd" in template.keys() else NO_ROLE,
f" {AND} ".join([m[0] for m in template['PerpOrg']]) if "PerpOrg" in template.keys() else NO_ROLE,
f" {AND} ".join([m[0] for m in template['Target']]) if "Target" in template.keys() else NO_ROLE,
f" {AND} ".join([m[0] for m in template['Victim']]) if "Victim" in template.keys() else NO_ROLE,
f" {AND} ".join([m[0] for m in template['Weapon']]) if "Weapon" in template.keys() else NO_ROLE
)
entity_tokens.append(
"<PerpInd> {} </PerpInd><PerpOrg> {} </PerpOrg><Target> {} </Target><Victim> {} </Victim><Weapon> {} </Weapon>".format(
*filler))
mention_chunk = []
for entity_token in entity_tokens:
mention_chunk += token2sub_tokens(tokenizer, entity_token)
current_template_chunk.append(mention_chunk)
res.append(current_template_chunk)
res = res[0][0]
elif config.task == "tf":
for template in templates:
if "incident_type" in template.keys():
entity_tokens = []
filler = (
f" {AND} ".join([m for a in template['PerpInd'] for m in a]) if "PerpInd" in template.keys() else NO_ROLE,
f" {AND} ".join([m for a in template['PerpOrg'] for m in a]) if "PerpOrg" in template.keys() else NO_ROLE,
f" {AND} ".join([m for a in template['Target'] for m in a]) if "Target" in template.keys() else NO_ROLE,
f" {AND} ".join( [m for a in template['Victim'] for m in a]) if "Victim" in template.keys() else NO_ROLE,
f" {AND} ".join([m for a in template['Weapon'] for m in a]) if "Weapon" in template.keys() else NO_ROLE,
)
entity_tokens.append("<SEP_T>" + "<SEP> " + template['incident_type'] + " </SEP>" +
"<PerpInd> {} </PerpInd><PerpOrg> {} </PerpOrg><Target> {} </Target><Victim> {} </Victim><Weapon> {} </Weapon>".format(*filler))
template_chunk = []
for entity_token in entity_tokens:
template_chunk += token2sub_tokens(tokenizer, entity_token)
res.extend(template_chunk)
return res
def collate_fn(self, batch):
batch_input_ids = []
batch_attention_masks = []
batch_decoder_input_chunks = []
batch_input_tokens = []
batch_document = []
doc_ids = [inst.doc_id for inst in batch]
for inst in batch:
batch_input_ids.append(inst.input_ids)
batch_attention_masks.append(inst.attention_mask)
batch_decoder_input_chunks.append(inst.decoder_input_chunks)
batch_input_tokens.append(inst.input_tokens)
batch_document.append(inst.document)
if self.gpu:
batch_input_ids = torch.cuda.LongTensor(batch_input_ids)
batch_attention_masks = torch.cuda.FloatTensor(batch_attention_masks)
else:
batch_input_ids = torch.LongTensor(batch_input_ids)
batch_attention_masks = torch.FloatTensor(batch_attention_masks)
return Batch(
doc_ids=doc_ids,
input_ids=batch_input_ids,
attention_masks=batch_attention_masks,
decoder_input_chunks=batch_decoder_input_chunks,
input_tokens=batch_input_tokens,
document=batch_document
)