ALADIN: Advanced Local Drug-Target Interaction Prediction technique
version 1.0, April 20, 2017
This package is written by:
Krisztian Buza and Ladislav Peska
Email: [email protected]
This package is based on the PyDTI package by Yong Liu, https://github.com/stephenliu0423/PyDTI
and PyHubs package available from http://biointelligence.hu/pyhubs/
ALADIN works on Python 2.7 (tested on Intel Python 2.7.12) and requires NumPy <=1.11, scikit-learn and SciPy to run.
To get the results of different methods, please run eval.py by setting suitable values for the following parameters:
--method set DTI prediction method, i.e. blmnii, netlaprls, wnngip, aladin
--dataset: choose the benchmark dataset, i.e., nr, gpcr, ic, e, kinase
--method-opt: set arguments for each method
--predict-num: a positive integer for predicting top-N novel DTIs for each drug and target (default 0)
The following examples evaluates the ALADIN method and its competitors on the GPCR dataset (hyperparameter search is included)
main(['--method=aladin', '--dataset=gpcr', '--cvs=1', '--specify-arg=1', '--method-opt=hpLearning=1'])
main(['--method=netlaprls', '--dataset=gpcr', '--cvs=1', '--specify-arg=1'])
main(['--method=wnngip', '--dataset=gpcr', '--cvs=1', '--specify-arg=1'])
main(['--method=blmnii', '--dataset=gpcr', '--cvs=1', '--specify-arg=1'])
The following examples performes prediction of top-20 new interactions within the GPCR dataset (hyperparameter search is included)
main(['--method=aladin', '--dataset=gpcr', '--predict-num=20', '--specify-arg=1', '--method-opt=hpLearning=1'])
main(['--method=netlaprls', '--dataset=gpcr', '--predict-num=20', '--specify-arg=1'])
main(['--method=wnngip', '--dataset=gpcr', '--predict-num=20', '--specify-arg=1'])
main(['--method=blmnii', '--dataset=gpcr', '--predict-num=20', '--specify-arg=1'])
By default, hyperparameters are learned via grid search for all evaluated methods on the train set.
To change searched hyperparameters, update cv_eval.py:
blmnii_cv_eval() for blmnii,
aladin_cv_eval() for aladin,
wnngip_cv_eval() for wnngip,
netlaprls_cv_eval() for netlaprls,
The results can be analysed via result_sign_analysis.py.