Skip to content

Radar-Camera Fusion Dense Prediction Transformer

License

Notifications You must be signed in to change notification settings

lochenchou/RCDPT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RCDPT

Radar-Camera Fusion Dense Prediction Transformer

Official implementation of "RCDPT: Radar-Camera Fusion Dense Prediction Transformer" (https://arxiv.org/abs/2211.02432), an accepted paper of ICASSP2023.

Dependency

Please check Dockerfile for environment settings and python packages

Or you could directly use the pre-built docker image with tag 'lochenchou/det:mde' from docker hub.

Usage

Generating Multi-channel Enhanced Radar

For generating Multi-channel Enhanced Radar (MER), which is the radar format used in the experiment, please follow the instructions of RC-PDA (https://github.com/longyunf/rc-pda).

Generating Sparse Lidar depthmap.

Please follow the steps in gen_interpolation.py in DORN_radar repo (https://github.com/lochenchou/DORN_radar) to generate 5 frames sparse lidar as the golden ground truth to evaluate with during the evaluation step.

Train baseline model and proposed model on nuScenes

Directly call 'train.py' with dataset paths for training the baseline model and the proposed model on nuScenes.

Citation

If you find this work useful in your research, please consider citing:

@inproceedings{RCDPT,
  author={Lo, Chen-Chou and Vandewalle, Patrick},
  booktitle={Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2023)}, 
  title={RCDPT: Radar-Camera fusion Dense Prediction Transformer}, 
  year={2023},
}

About

Radar-Camera Fusion Dense Prediction Transformer

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages