-
Notifications
You must be signed in to change notification settings - Fork 54
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
832 additions
and
84 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
# Config for multi-device full finetuning in full_finetune_distributed.py | ||
# using a Llama3 8B Instruct model | ||
# | ||
# This config assumes that you've run the following command before launching | ||
# this run: | ||
# tune download meta-llama/Meta-Llama-3-8B-Instruct --output-dir /tmp/Meta-Llama-3-8B-Instruct --hf-token <HF_TOKEN> | ||
# | ||
# To launch on 4 devices, run the following command from root: | ||
# tune run --nproc_per_node 4 full_finetune_distributed --config llama3/8B_full | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training | ||
# you can run: | ||
# tune run --nproc_per_node 4 full_finetune_distributed --config llama3/8B_full checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
# | ||
# This config works best when the model is being fine-tuned on 2+ GPUs. | ||
# Single device full finetuning requires more memory optimizations. It's | ||
# best to use 8B_full_single_device.yaml for those cases | ||
|
||
|
||
# Tokenizer | ||
tokenizer: | ||
_component_: torchtune.models.llama3.llama3_tokenizer | ||
path: ./models/Meta-Llama-3-8B/original/tokenizer.model | ||
|
||
# Dataset | ||
dataset: | ||
_component_: torchtune.datasets.instruct_dataset | ||
source: csv | ||
data_files: state_tactic_pairs.csv | ||
split: train | ||
template: generator.template.StateTacticPairTemplate | ||
train_on_input: False | ||
max_seq_len: 4096 | ||
seed: null | ||
shuffle: True | ||
|
||
# Model Arguments | ||
model: | ||
_component_: torchtune.models.llama3.llama3_8b | ||
|
||
checkpointer: | ||
_component_: torchtune.utils.FullModelHFCheckpointer | ||
checkpoint_dir: ./models/Meta-Llama-3-8B/ | ||
checkpoint_files: [ | ||
model-00001-of-00004.safetensors, | ||
model-00002-of-00004.safetensors, | ||
model-00003-of-00004.safetensors, | ||
model-00004-of-00004.safetensors, | ||
] | ||
recipe_checkpoint: null | ||
output_dir: ./models/Meta-Llama-3-8B-finetuned/ | ||
model_type: LLAMA3 | ||
resume_from_checkpoint: False | ||
|
||
# Fine-tuning arguments | ||
batch_size: 4 | ||
epochs: 1 | ||
|
||
optimizer: | ||
_component_: torch.optim.AdamW | ||
lr: 2e-5 | ||
foreach: False | ||
|
||
loss: | ||
_component_: torch.nn.CrossEntropyLoss | ||
max_steps_per_epoch: null | ||
gradient_accumulation_steps: 1 | ||
|
||
|
||
# Training env | ||
device: cuda | ||
|
||
# Memory management | ||
enable_activation_checkpointing: True | ||
memory_efficient_fsdp_wrap: True | ||
|
||
# Reduced precision | ||
dtype: bf16 | ||
|
||
# Logging | ||
metric_logger: | ||
_component_: torchtune.utils.metric_logging.WandBLogger | ||
project: ReProver | ||
log_dir: ${output_dir} | ||
output_dir: ./logs/leandojo-llama3-finetune | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: false |
Oops, something went wrong.