This repository contains the code and links to the dataset and retrained models from the following publication: Evaluating Segmentation Approaches on Digitized Herbarium Specimens
See: Dataset
Inference and Training Code: plant_binary_segmentation
Model | IoU | F1 | Download |
---|---|---|---|
UNet++ | 0.951 | 0.975 | UNet++ |
U-Net | 0.950 | 0.974 | U-Net |
DeeplabV3+ | 0.915 | 0.954 | DeeplabV3+ |
YOLOv8 inference and training code: plant_instance_YOLOv8
Mask2Former inference code: mask2former_segmentation (training code TODO)
Left to right: Detectron2, Mask R-CNN, YOLOv8, and Mask2Former
Model | Box AP | Box AP50 | Mask AP | Mask AP50 | Plant AP | Object AP | Download |
---|---|---|---|---|---|---|---|
Detectron2 | 76.7 | 95.7 | 68.4 | 85.4 | 9.0 | 78.3 | Detectron2 |
Mask R-CNN | 78.2 | 94.6 | 76.7 | 92.7 | 31.9 | 84.1 | Mask R-CNN |
YOLOv8 | 87.0 | 98.5 | 78.5 | 96.1 | 48.1 | 83.5 | YOLOv8l-seg |
Mask2Former | 80.7 | 93.2 | 78.9 | 91.0 | 77.0 | 79.2 | Mask2Former |
Mask2Former inference code: mask2former_segmentation (training code TODO)
Model | Mask AP* | Mask AP50* | Plant IoU | Download |
---|---|---|---|---|
YOLOv8 + UNet++ | 83.7 | 98.3 | 0.951 | UNet++ - YOLOv8l-seg (objects only) |
Mask2Former | 81.6 | 95.7 | 0.899 | Mask2Former |
*Mask APs for object classes only
Semi-automatic labeling: generate_plant_masks
Interactive Manual validation with OpenCV via: label_plant_masks.py
- Manually label objects with LabelMe or similar tool.
- Convert to COCO format
- Generate panoptic labels
If you use this dataset or code in your research, please use the following BibTeX entry:
@inproceedings{milleville2023evaluating,
title={Evaluating Segmentation Approaches on Digitized Herbarium Specimens},
author={Milleville, Kenzo and Chandrasekar, Krishna Kumar Thirukokaranam and Van de Weghe, Nico and Verstockt, Steven},
booktitle="Advances in Visual Computing",
year="2023",
publisher="Springer Nature Switzerland",
address="Cham",
pages="65--78",
isbn="978-3-031-47966-3"
}