Skip to content

kymillev/herbarium-segmentation

Repository files navigation

Herbarium Segmentation

This repository contains the code and links to the dataset and retrained models from the following publication: Evaluating Segmentation Approaches on Digitized Herbarium Specimens

Dataset

See: Dataset

Pretrained models

Binary Segmentation

Inference and Training Code: plant_binary_segmentation

Binary plant prediction

Model IoU F1 Download
UNet++ 0.951 0.975 UNet++
U-Net 0.950 0.974 U-Net
DeeplabV3+ 0.915 0.954 DeeplabV3+

Instance Segmentation

YOLOv8 inference and training code: plant_instance_YOLOv8

Mask2Former inference code: mask2former_segmentation (training code TODO)

Instance predictions

Left to right: Detectron2, Mask R-CNN, YOLOv8, and Mask2Former

Model Box AP Box AP50 Mask AP Mask AP50 Plant AP Object AP Download
Detectron2 76.7 95.7 68.4 85.4 9.0 78.3 Detectron2
Mask R-CNN 78.2 94.6 76.7 92.7 31.9 84.1 Mask R-CNN
YOLOv8 87.0 98.5 78.5 96.1 48.1 83.5 YOLOv8l-seg
Mask2Former 80.7 93.2 78.9 91.0 77.0 79.2 Mask2Former

Panoptic Segmentation

Mask2Former inference code: mask2former_segmentation (training code TODO)

Model Mask AP* Mask AP50* Plant IoU Download
YOLOv8 + UNet++ 83.7 98.3 0.951 UNet++ - YOLOv8l-seg (objects only)
Mask2Former 81.6 95.7 0.899 Mask2Former

*Mask APs for object classes only

Labeling new data

Semi-automatic labeling: generate_plant_masks

Interactive Manual validation with OpenCV via: label_plant_masks.py

Semi-automatic labeling

Preparing custom dataset

  1. Manually label objects with LabelMe or similar tool.
  2. Convert to COCO format
  3. Generate panoptic labels

Citation

If you use this dataset or code in your research, please use the following BibTeX entry:

@inproceedings{milleville2023evaluating,
  title={Evaluating Segmentation Approaches on Digitized Herbarium Specimens},
  author={Milleville, Kenzo and Chandrasekar, Krishna Kumar Thirukokaranam and Van de Weghe, Nico and Verstockt, Steven},
  booktitle="Advances in Visual Computing",
  year="2023",
  publisher="Springer Nature Switzerland",
  address="Cham",
  pages="65--78",
  isbn="978-3-031-47966-3"
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published