Official PyTorch implementation for the paper:
Prototypical Calibrating Ambiguous Samples for Micro-Action Recognition, AAAI 2025.
conda create --name openmmlab python=3.8 -y
conda activate openmmlab
conda install pytorch torchvision -c pytorch # This command will automatically install the latest version PyTorch and cudatoolkit, please check whether they match your environment.
pip install -U openmim
mim install mmengine
mim install mmcv
mim install mmdet # optional
mim install mmpose # optional
git clone https://github.com/kunli-cs/PCAN.git
cd ./mmaction2
pip install -v -e .
TBD
If you found this code useful, please consider cite:
@article{li2024prototypical,
title={Prototypical Calibrating Ambiguous Samples for Micro-Action Recognition},
author={Li, Kun and Guo, Dan and Chen, Guoliang and Fan, Chunxiao and Xu, Jingyuan and Wu, Zhiliang and Fan, Hehe and Wang, Meng},
journal={arXiv preprint arXiv:2412.14719},
year={2024}
}
@article{guo2024benchmarking,
title={Benchmarking Micro-action Recognition: Dataset, Methods, and Applications},
author={Guo, Dan and Li, Kun and Hu, Bin and Zhang, Yan and Wang, Meng},
journal={IEEE Transactions on Circuits and Systems for Video Technology},
year={2024},
volume={34},
number={7},
pages={6238-6252},
}
@misc{2020mmaction2,
title={OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark},
author={MMAction2 Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmaction2}},
year={2020}
}
This code began with mmaction2. We thank the developers for doing most of the heavy-lifting.