Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added a few very interesting resources + improvements/refactor #34

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 10 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Awesome Recurrent Neural Networks
# Awesome Recurrent Neural Networks (RNN)

A curated list of resources dedicated to recurrent neural networks (closely related to *deep learning*).

Expand All @@ -13,10 +13,10 @@ Please feel free to [pull requests](https://github.com/kjw0612/awesome-rnn/pulls
[![Join the chat at https://gitter.im/kjw0612/awesome-rnn](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/kjw0612/awesome-rnn?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)

## Sharing
+ [Share on Twitter](http://twitter.com/home?status=http://jiwonkim.org/awesome-rnn%0AResources%20for%20Recurrent%20Neural%20Networks)
+ [Share on Facebook](http://www.facebook.com/sharer/sharer.php?u=https://jiwonkim.org/awesome-rnn)
+ [Share on Google Plus](http://plus.google.com/share?url=https://jiwonkim.org/awesome-rnn)
+ [Share on LinkedIn](http://www.linkedin.com/shareArticle?mini=true&url=https://jiwonkim.org/awesome-rnn&title=Awesome%20Recurrent%20Neural&Networks&summary=&source=)
- [Share on Twitter](http://twitter.com/home?status=http://jiwonkim.org/awesome-rnn%0AResources%20for%20Recurrent%20Neural%20Networks)
- [Share on Facebook](http://www.facebook.com/sharer/sharer.php?u=https://jiwonkim.org/awesome-rnn)
- [Share on Google Plus](http://plus.google.com/share?url=https://jiwonkim.org/awesome-rnn)
- [Share on LinkedIn](http://www.linkedin.com/shareArticle?mini=true&url=https://jiwonkim.org/awesome-rnn&title=Awesome%20Recurrent%20Neural&Networks&summary=&source=)

## Table of Contents

Expand Down Expand Up @@ -60,6 +60,8 @@ Please feel free to [pull requests](https://github.com/kjw0612/awesome-rnn/pulls
* [Scikit Flow (skflow)](https://github.com/tensorflow/skflow) - Simplified Scikit-learn like Interface for TensorFlow
* [Keras](http://keras.io/) : (Tensorflow / Theano)-based modular deep learning library similar to Torch
* [char-rnn-tensorflow](https://github.com/sherjilozair/char-rnn-tensorflow) by sherjilozair: char-rnn in tensorflow
* [LSTMs for Human Activity Recognition](https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition) : RNN code example for classification on time series in TensorFlow on cellphone sensor data, by Guillaume Chevalier
* [Signal prediction with a seq2seq RNN](https://github.com/guillaume-chevalier/seq2seq-signal-prediction) : Coding exercises for signal prediction with a seq2seq model, in TensorFlow, by Guillaume Chevalier
* [Theano](http://deeplearning.net/software/theano/) - Python
* Simple IPython [tutorial on Theano](http://nbviewer.jupyter.org/github/craffel/theano-tutorial/blob/master/Theano%20Tutorial.ipynb)
* [Deep Learning Tutorials](http://www.deeplearning.net/tutorial/)
Expand Down Expand Up @@ -166,6 +168,8 @@ Please feel free to [pull requests](https://github.com/kjw0612/awesome-rnn/pulls
* Ivan Sorokin, Alexey Seleznev, Mikhail Pavlov, Aleksandr Fedorov, Anastasiia Ignateva, *Deep Attention Recurrent Q-Network* , arXiv:1512.01693
* Dynamic Memory Networks [[Paper](http://arxiv.org/abs/1506.07285)]
* Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani, Victor Zhong, Romain Paulus, Richard Socher, "Ask Me Anything: Dynamic Memory Networks for Natural Language Processing", arXiv:1506.07285
* Differentiable Neural Computer [[Paper](https://www.nature.com/articles/nature20101.epdf?author_access_token=ImTXBI8aWbYxYQ51Plys8NRgN0jAjWel9jnR3ZoTv0MggmpDmwljGswxVdeocYSurJ3hxupzWuRNeGvvXnoO8o4jTJcnAyhGuZzXJ1GEaD-Z7E6X_a9R-xqJ9TfJWBqz)], [[Code](https://github.com/deepmind/dnc)]
* Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, Demis Hassabis, "Hybrid computing using a neural network with dynamic external memory", doi:10.1038/nature20101

### Surveys
* Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, [Deep Learning](http://www.nature.com/nature/journal/v521/n7553/pdf/nature14539.pdf), Nature 2015
Expand Down Expand Up @@ -384,6 +388,7 @@ Recurrent Neural Networks*, arXiv:1506.03099 / NIPS 2015 [[Paper](http://arxiv.o
* Quan Gan, Qipeng Guo, Zheng Zhang, and Kyunghyun Cho, *First Step toward Model-Free, Anonymous Object Tracking with Recurrent Neural Networks*, arXiv:1511.06425 [[Paper](http://arxiv.org/pdf/1511.06425.pdf)]
* Francesco Visin, Kyle Kastner, Aaron Courville, Yoshua Bengio, Matteo Matteucci, and Kyunghyun Cho, *ReSeg: A Recurrent Neural Network for Object Segmentation*, arXiv:1511.07053 [[Paper](http://arxiv.org/pdf/1511.07053.pdf)]
* Juergen Schmidhuber, *On Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning Controllers and Recurrent Neural World Models*, arXiv:1511.09249 [[Paper]](http://arxiv.org/pdf/1511.09249)
* Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom Schaul, Brendan Shillingford, Nando de Freitas, *Learning to learn by gradient descent by gradient descent*, arXiv:1606.04474 [[Paper]](http://arxiv.org/pdf/1606.04474), [[Code](https://github.com/deepmind/learning-to-learn)]

## Datasets
* Speech Recognition
Expand Down