Llama 3 (8B) finetuned on Alpaca instruction-tuning dataset generated with GPT4. The model can be found here.
This is the training run on Weights and Biases:
Here is the instruction template https://github.com/meta-llama/llama3?tab=readme-ov-file#instruction-tuned-models Quoting below
The prompt begins with a <|begin_of_text|> special token, after which one or more messages follow. Each message starts with the <|start_header_id|> tag, the role system, user or assistant, and the <|end_header_id|> tag. After a double newline \n\n the contents of the message follow. The end of each message is marked by the <|eot_id|> token.
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{{ system_prompt }}<|eot_id|><|start_header_id|>user<|end_header_id|>
{{ user_msg_1 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{{ model_answer_1 }}<|eot_id|>
Evaluated using AutoEval: https://github.com/mlabonne/llm-autoeval
This is currently Meta-Llama3-8B on eqbench:
Model | EQ-Bench | Average |
---|---|---|
llama3-8b-alpaca-lora-peft | 29.42 | 29.42 |
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
eq_bench | 2.1 | eqbench,none | 29.42 | ||
eqbench_stderr,none | 3.58 | ||||
percent_parseable,none | 100 | ||||
percent_parseable_stderr,none | 0 | ||||
alias | eq_bench |
Average: 29.42%
Average score: 29.42%
Elapsed time: 00:12:31
Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
---|---|---|---|---|---|
llama3-8b-alpaca-lora-peft | 32 | 70.82 | 59.54 | 37.32 | 49.92 |
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
agieval_aqua_rat | 0 | acc | 19.69 | ± | 2.50 |
acc_norm | 21.65 | ± | 2.59 | ||
agieval_logiqa_en | 0 | acc | 32.87 | ± | 1.84 |
acc_norm | 32.26 | ± | 1.83 | ||
agieval_lsat_ar | 0 | acc | 19.13 | ± | 2.60 |
acc_norm | 18.26 | ± | 2.55 | ||
agieval_lsat_lr | 0 | acc | 32.35 | ± | 2.07 |
acc_norm | 30.39 | ± | 2.04 | ||
agieval_lsat_rc | 0 | acc | 49.07 | ± | 3.05 |
acc_norm | 39.41 | ± | 2.98 | ||
agieval_sat_en | 0 | acc | 54.85 | ± | 3.48 |
acc_norm | 47.57 | ± | 3.49 | ||
agieval_sat_en_without_passage | 0 | acc | 35.44 | ± | 3.34 |
acc_norm | 30.10 | ± | 3.20 | ||
agieval_sat_math | 0 | acc | 39.09 | ± | 3.30 |
acc_norm | 36.36 | ± | 3.25 |
Average: 32.0%
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
arc_challenge | 0 | acc | 53.67 | ± | 1.46 |
acc_norm | 54.78 | ± | 1.45 | ||
arc_easy | 0 | acc | 81.14 | ± | 0.80 |
acc_norm | 77.65 | ± | 0.85 | ||
boolq | 1 | acc | 80.67 | ± | 0.69 |
hellaswag | 0 | acc | 60.96 | ± | 0.49 |
acc_norm | 79.50 | ± | 0.40 | ||
openbookqa | 0 | acc | 37.80 | ± | 2.17 |
acc_norm | 47.00 | ± | 2.23 | ||
piqa | 0 | acc | 81.18 | ± | 0.91 |
acc_norm | 81.18 | ± | 0.91 | ||
winogrande | 0 | acc | 74.98 | ± | 1.22 |
Average: 70.82%
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
truthfulqa_mc | 1 | mc1 | 41.86 | ± | 1.73 |
mc2 | 59.54 | ± | 1.50 |
Average: 59.54%
Task | Version | Metric | Value | Stderr | |
---|---|---|---|---|---|
bigbench_causal_judgement | 0 | multiple_choice_grade | 58.95 | ± | 3.58 |
bigbench_date_understanding | 0 | multiple_choice_grade | 67.21 | ± | 2.45 |
bigbench_disambiguation_qa | 0 | multiple_choice_grade | 31.01 | ± | 2.89 |
bigbench_geometric_shapes | 0 | multiple_choice_grade | 21.73 | ± | 2.18 |
exact_str_match | 0.00 | ± | 0.00 | ||
bigbench_logical_deduction_five_objects | 0 | multiple_choice_grade | 25.20 | ± | 1.94 |
bigbench_logical_deduction_seven_objects | 0 | multiple_choice_grade | 18.57 | ± | 1.47 |
bigbench_logical_deduction_three_objects | 0 | multiple_choice_grade | 42.33 | ± | 2.86 |
bigbench_movie_recommendation | 0 | multiple_choice_grade | 26.40 | ± | 1.97 |
bigbench_navigate | 0 | multiple_choice_grade | 50.00 | ± | 1.58 |
bigbench_reasoning_about_colored_objects | 0 | multiple_choice_grade | 59.10 | ± | 1.10 |
bigbench_ruin_names | 0 | multiple_choice_grade | 24.33 | ± | 2.03 |
bigbench_salient_translation_error_detection | 0 | multiple_choice_grade | 29.06 | ± | 1.44 |
bigbench_snarks | 0 | multiple_choice_grade | 46.96 | ± | 3.72 |
bigbench_sports_understanding | 0 | multiple_choice_grade | 64.20 | ± | 1.53 |
bigbench_temporal_sequences | 0 | multiple_choice_grade | 27.00 | ± | 1.40 |
bigbench_tracking_shuffled_objects_five_objects | 0 | multiple_choice_grade | 21.60 | ± | 1.16 |
bigbench_tracking_shuffled_objects_seven_objects | 0 | multiple_choice_grade | 15.83 | ± | 0.87 |
bigbench_tracking_shuffled_objects_three_objects | 0 | multiple_choice_grade | 42.33 | ± | 2.86 |
Average: 37.32%
Average score: 49.92%
Elapsed time: 02:23:00
Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
---|---|---|---|---|---|
llama3-8b-alpaca-lora-peft | 32 | 70.82 | 59.54 | 37.32 | 49.92 |
meta-llama/Meta-Llama-3-8B | 31.1 | 69.95 | 43.91 | 36.7 | 45.42 |
meta-llama/Meta-Llama-3-8B-Instruct | 41.22 | 69.86 | 51.65 | 42.64 | 51.34 |
The base model is quite good, but on similar evals, our model seems to increase most of the scores, but it doesn't match the Instruct variant from Llama (as expected - they have much more alignment data and compute than we do). We could possibly make this better with alignment techniques like DPO or mixed SFT-and-alignment techniques like ORPO.