这是一个简单的 Python 工具集,用于分析 Instagram 帐号的 Follower 和 Following 数据。通过这些脚本,你可以轻松:
- 找出未回关你的用户。
- 分析谁在不同时间段内取关了你。
This is a simple Python toolkit for analyzing the follower and following data of Instagram accounts. With these scripts, you can:
- Identify users who haven't followed you back.
- Analyze who unfollowed you over time.
请参阅 data_instructions.txt 获取详细步骤。 Please refer to data_instructions.txt for detailed steps.
-
提取用户名:从 Instagram 的 HTML 数据文件中提取 Follower 和 Following 用户名列表。(从个人信息中下载,选择下载所有时间的followers and following data)
-
未回关用户分析:对比 Follower 和 Following,找出未回关你的用户。
-
历史数据对比:比较之前的记录,找出新增的未回关用户。
-
取关分析:通过不同时间段的 Follower 快照,识别取关用户。
-
Extract Usernames: Extract follower and following username lists from Instagram HTML data files. (Download your personal information from instagram, then click "follower and following", select all)
-
Non-Followback Detection: Compare followers and followings to find users who don’t follow you back.
-
Historical Comparison: Compare previous records to find newly added non-followback users.
-
Unfollow Analysis: Detect users who unfollowed you by comparing snapshots of follower data.
运行 1_filtering.py
,从 Instagram 的 HTML 文件中提取并保存用户名:
Run 1_filtering.py
to extract and save usernames from Instagram HTML files:
python 1_filtering.py
输出文件 (Output files):
• extracted_followers_usernames.txt:提取的 Follower 用户名。
• extracted_following_usernames.txt:提取的 Following 用户名。
2. 找出未回关用户 (Find Non-Followers)
运行 2_compare.py,找出未回关你的用户:
Run 2_compare.py to identify users who haven’t followed you back:
python 2_compare.py
输出文件 (Output file):
• not_following_back.txt:未回关你的用户名列表。
3. 历史数据对比 (Compare Historical Data)
运行 3_compare_previous.py,对比之前的未回关数据:
Run 3_compare_previous.py to compare historical non-followback data:
python 3_compare_previous.py
输出文件 (Output file):
• not_in_base.txt:新增的未回关用户名列表。
4. 取关分析 (Unfollow Analysis)
运行 4_follower_loss.py,分析取关你的用户:
Run 4_follower_loss.py to analyze users who unfollowed you:
python 4_follower_loss.py
输出文件 (Output file):
• follower_loss_1.txt:取关用户名列表。
💡 依赖 (Dependencies)
• Python 3.x
• BeautifulSoup4
安装依赖 (Install dependencies):
pip install beautifulsoup4
如果你有任何问题或建议,请随时联系!
Feel free to reach out if you have any questions or suggestions! 😊