Skip to content

Commit

Permalink
更新「05.01.01 动态规划基础」相关内容
Browse files Browse the repository at this point in the history
  • Loading branch information
itcharge committed Oct 18, 2023
1 parent 28b87df commit c2e1bd5
Showing 1 changed file with 3 additions and 3 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ class Solution:
也就是说,**一旦某一个子问题的求解结果确定以后,就不会再被修改**

举个例子,下图是一个有向无环带权图,我们在求解从 $A$ 点到 $F$ 点的最短路径问题时,假设当前已知从 $A$ 点到 $D$ 点的最短路径($2 + 7 = 11$)。那么无论之后的路径如何选择,都不会影响之前从 $A$ 点到 $D$ 点的最短路径长度。这就是「无后效性」。
举个例子,下图是一个有向无环带权图,我们在求解从 $A$ 点到 $F$ 点的最短路径问题时,假设当前已知从 $A$ 点到 $D$ 点的最短路径($2 + 7 = 9$)。那么无论之后的路径如何选择,都不会影响之前从 $A$ 点到 $D$ 点的最短路径长度。这就是「无后效性」。

而如果一个问题具有「后效性」,则可能需要先将其转化或者逆向求解来消除后效性,然后才可以使用动态规划算法。

Expand Down Expand Up @@ -381,8 +381,8 @@ class Solution:

#### 4.3.5 复杂度分析

- **时间复杂度**:$O(m * n)$。初始条件赋值的时间复杂度为 $O(m + n)$,两重循环遍历的时间复杂度为 $O(m * n)$,所以总体时间复杂度为 $O(m * n)$。
- **空间复杂度**:$O(m * n)$。用到了二维数组保存状态,所以总体空间复杂度为 $O(m * n)$。因为 $dp[i][j]$ 的状态只依赖于上方值 $dp[i - 1][j]$ 和左侧值 $dp[i][j - 1]$,而我们在进行遍历时的顺序刚好是从上至下、从左到右。所以我们可以使用长度为 $m$ 的一维数组来保存状态,从而将空间复杂度优化到 $O(m)$。
- **时间复杂度**:$O(m \times n)$。初始条件赋值的时间复杂度为 $O(m + n)$,两重循环遍历的时间复杂度为 $O(m \times n)$,所以总体时间复杂度为 $O(m \times n)$。
- **空间复杂度**:$O(m \times n)$。用到了二维数组保存状态,所以总体空间复杂度为 $O(m \times n)$。因为 $dp[i][j]$ 的状态只依赖于上方值 $dp[i - 1][j]$ 和左侧值 $dp[i][j - 1]$,而我们在进行遍历时的顺序刚好是从上至下、从左到右。所以我们可以使用长度为 $n$ 的一维数组来保存状态,从而将空间复杂度优化到 $O(n)$。

## 参考资料

Expand Down

0 comments on commit c2e1bd5

Please sign in to comment.