Skip to content

Source code of paper: "HRegNet: A Hierarchical Network for Efficient and Accurate Outdoor LiDAR Point Cloud Registration".

License

Notifications You must be signed in to change notification settings

ispc-lab/HRegNet2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HRegNet: A Hierarchical Network for Efficient and Accurate Outdoor LiDAR Point Cloud Registration

Environments

The code mainly requires the following libraries and you can check requirements.txt for more environment requirements.

Please run the following commands to install point_utils

cd model/PointUtils
python setup.py install

Training device: NVIDIA RTX 3090

Datasets

The point cloud pairs list and the ground truth relative transformation are stored in data/kitti_list, data/nuscenes_list and data/apollo_list. The data of the three datasets should be organized as follows:

KITTI odometry dataset

DATA_ROOT
├── 00
│   ├── velodyne
│   ├── calib.txt
├── 01
├── ...

NuScenes dataset

DATA_ROOT
├── v1.0-trainval
│   ├── maps
│   ├── samples
│   │   ├──LIDAR_TOP
│   ├── sweeps
│   ├── v1.0-trainval
├── v1.0-test
│   ├── maps
│   ├── samples
│   │   ├──LIDAR_TOP
│   ├── sweeps
│   ├── v1.0-test

Apollo-SouthBay dataset

DATA_ROOT
├── TrainData
│   ├── BaylandsToSeafood
│   ├── ColumbiaPark
│   ├── ...
├── TestData
│   ├── BaylandsToSeafood
│   ├── ColumbiaPark
│   ├── ...

Train

We provide training scripts in scripts/.

Please specify the following entries:

  • DATASET: ['kitti','nusc','apollo']
  • ROOT: Root of the dataset
  • DATA_LIST: Data list in data/data_list, e.g., data/data_list/kitti_list
  • CKPT_DIR: The dir you want to save the ckpt and log files
  • NPOINTS: 16384 for kitti and apollo, 8192 for nuscenes
  • pretrain_feats: Pretrain weights for feature extractor
  • GPU: GPU Id if you have multiple GPUs

Test

We provide pre-trained weights for three datasets in ckpt/pretrained/kitti_release/, ckpt/pretrained/nusc_release/ and ckpt/pretrained/apollo_release/, respectively. And the test scripts are provided in scripts/.

Please specify the following entries:

  • DATASET: ['kitti','nusc','apollo']
  • ROOT: Root of the dataset
  • DATA_LIST: Data list in data/data_list, e.g., data/data_list/kitti_list
  • SAVE_DIR: The dir you want to save the results
  • PRETRAIN_WEIGHTS: Pretrain weights in ckpt/pretrained, e.g., ckpt/pretrained/kitti_release/kitti.pth
  • NPOINTS: 16384 for kitti and apollo, 8192 for nuscenes

About

Source code of paper: "HRegNet: A Hierarchical Network for Efficient and Accurate Outdoor LiDAR Point Cloud Registration".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published