The code mainly requires the following libraries and you can check requirements.txt
for more environment requirements.
- PyTorch 1.7.0/1.7.1
- Cuda 11.0/11.1
- pytorch3d 0.6.0
- open3d 0.13.0
Please run the following commands to install point_utils
cd model/PointUtils
python setup.py install
Training device: NVIDIA RTX 3090
The point cloud pairs list and the ground truth relative transformation are stored in data/kitti_list
, data/nuscenes_list
and data/apollo_list
.
The data of the three datasets should be organized as follows:
DATA_ROOT
├── 00
│ ├── velodyne
│ ├── calib.txt
├── 01
├── ...
DATA_ROOT
├── v1.0-trainval
│ ├── maps
│ ├── samples
│ │ ├──LIDAR_TOP
│ ├── sweeps
│ ├── v1.0-trainval
├── v1.0-test
│ ├── maps
│ ├── samples
│ │ ├──LIDAR_TOP
│ ├── sweeps
│ ├── v1.0-test
DATA_ROOT
├── TrainData
│ ├── BaylandsToSeafood
│ ├── ColumbiaPark
│ ├── ...
├── TestData
│ ├── BaylandsToSeafood
│ ├── ColumbiaPark
│ ├── ...
We provide training scripts in scripts/
.
Please specify the following entries:
DATASET
: ['kitti','nusc','apollo']ROOT
: Root of the datasetDATA_LIST
: Data list indata/data_list
, e.g.,data/data_list/kitti_list
CKPT_DIR
: The dir you want to save the ckpt and log filesNPOINTS
: 16384 for kitti and apollo, 8192 for nuscenespretrain_feats
: Pretrain weights for feature extractorGPU
: GPU Id if you have multiple GPUs
We provide pre-trained weights for three datasets in ckpt/pretrained/kitti_release/
, ckpt/pretrained/nusc_release/
and ckpt/pretrained/apollo_release/
, respectively. And the test scripts are provided in scripts/
.
Please specify the following entries:
DATASET
: ['kitti','nusc','apollo']ROOT
: Root of the datasetDATA_LIST
: Data list indata/data_list
, e.g.,data/data_list/kitti_list
SAVE_DIR
: The dir you want to save the resultsPRETRAIN_WEIGHTS
: Pretrain weights inckpt/pretrained
, e.g.,ckpt/pretrained/kitti_release/kitti.pth
NPOINTS
: 16384 for kitti and apollo, 8192 for nuscenes