-
Notifications
You must be signed in to change notification settings - Fork 38
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Sglang integrarion: Fix dtype mismatch #456
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -40,6 +40,7 @@ def get_extend_attention_kernel( | |
|
||
assert wave_input_dtype in [ | ||
tkl.f16, | ||
tkl.bf16, | ||
], f"Unsupported input datatype: {wave_input_dtype}" | ||
assert ( | ||
wave_output_dtype.is_float_asm() | ||
|
@@ -162,12 +163,12 @@ def extend_attention( | |
N_KV, H_KV, D_KV, ADDRESS_SPACE, wave_input_dtype, v_cache_layout | ||
], | ||
block_table: tkl.Memory[ | ||
S, N_KV, GLOBAL_ADDRESS_SPACE, wave_size_dtype, block_table_layout | ||
S, N_KV, GLOBAL_ADDRESS_SPACE, tkl.i32, block_table_layout | ||
], | ||
request_indices: tkl.Memory[S, GLOBAL_ADDRESS_SPACE, wave_size_dtype], | ||
sequence_lengths: tkl.Memory[S, GLOBAL_ADDRESS_SPACE, wave_size_dtype], | ||
sequence_lengths_extend: tkl.Memory[S, GLOBAL_ADDRESS_SPACE, wave_size_dtype], | ||
start_indices_extend: tkl.Memory[S, GLOBAL_ADDRESS_SPACE, wave_size_dtype], | ||
sequence_lengths_extend: tkl.Memory[S, GLOBAL_ADDRESS_SPACE, tkl.i32], | ||
start_indices_extend: tkl.Memory[S, GLOBAL_ADDRESS_SPACE, tkl.i32], | ||
c: tkl.Memory[N_Q, H, D_KV, GLOBAL_ADDRESS_SPACE, wave_output_dtype, o_layout], | ||
): | ||
c_reg = tkl.Register[H, D_KV, N_Q, tkl.f32](0.0) | ||
|
@@ -181,6 +182,7 @@ def extend_attention( | |
seq_len_extend = tkw.read(sequence_lengths_extend, elements_per_thread=1) | ||
tkw.set_symbol(N_Q, seq_len_extend) | ||
seq_len = tkw.read(sequence_lengths, elements_per_thread=1) | ||
seq_len = tkw.cast(seq_len, tkl.i32) | ||
seq_len_prefix = seq_len - seq_len_extend | ||
|
||
tkw.set_symbol(N_KV, seq_len_prefix) | ||
|
@@ -202,11 +204,15 @@ def first_loop( | |
elements_per_thread=LOAD_ELEMS_PER_THREAD_QK, | ||
mapping=q_mapping, | ||
) | ||
if wave_input_dtype == tkl.bf16: | ||
q_reg = tkw.cast(tkw.cast(q_reg, tkl.f32), tkl.f16) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I realize now that this is not necessary, so we can remove this here and elsewhere. |
||
k_reg = tkw.read( | ||
k_cache, | ||
elements_per_thread=LOAD_ELEMS_PER_THREAD_QK, | ||
mapping=k_cache_mapping, | ||
) | ||
if wave_input_dtype == tkl.bf16: | ||
k_reg = tkw.cast(tkw.cast(k_reg, tkl.f32), tkl.f16) | ||
imm_reg = tkl.Register[H, N_KV, N_Q, tkl.f32](0.0) | ||
inner_acc = tkw.mma(k_reg, q_reg, imm_reg, mfma_variant[0]) | ||
x_j = tkw.permute(inner_acc, target_shape=[H, N_Q, N_KV]) | ||
|
@@ -215,12 +221,14 @@ def first_loop( | |
e_delta = tkw.exp2(x_j - m_j) | ||
e_init = partial_sum * e_delta_max | ||
d_j = tkw.sum(e_delta, e_init, dim=N_KV) | ||
imm_f16 = tkw.cast(e_delta, wave_input_dtype) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think we should also keep this as |
||
imm_f16 = tkw.cast(e_delta, tkl.f16) | ||
v_reg = tkw.read( | ||
v_cache, | ||
elements_per_thread=LOAD_ELEMS_PER_THREAD_PV, | ||
mapping=v_cache_mapping, | ||
) | ||
if wave_input_dtype == tkl.bf16: | ||
v_reg = tkw.cast(tkw.cast(v_reg, tkl.f32), tkl.f16) | ||
new_acc = acc * e_delta_max | ||
acc = tkw.mma(v_reg, imm_f16, new_acc) | ||
return m_j, d_j, acc | ||
|
@@ -241,24 +249,30 @@ def second_loop( | |
elements_per_thread=LOAD_ELEMS_PER_THREAD_QK, | ||
mapping=q_mapping, | ||
) | ||
if wave_input_dtype == tkl.bf16: | ||
q_reg = tkw.cast(tkw.cast(q_reg, tkl.f32), tkl.f16) | ||
k_reg = tkw.read( | ||
k, | ||
elements_per_thread=LOAD_ELEMS_PER_THREAD_QK, | ||
mapping=k_mapping, | ||
) | ||
if wave_input_dtype == tkl.bf16: | ||
k_reg = tkw.cast(tkw.cast(k_reg, tkl.f32), tkl.f16) | ||
inner_acc = tkw.mma(k_reg, q_reg, imm_reg, mfma_variant[0]) | ||
x_j = tkw.permute(inner_acc, target_shape=[H, N_Q, N_KV]) | ||
m_j = tkw.max(x_j, partial_max, dim=N_KV) | ||
e_delta_max = tkw.exp2(partial_max - m_j) | ||
e_delta = tkw.exp2(x_j - m_j) | ||
e_init = partial_sum * e_delta_max | ||
d_j = tkw.sum(e_delta, e_init, dim=N_KV) | ||
imm_f16 = tkw.cast(e_delta, wave_input_dtype) | ||
imm_f16 = tkw.cast(e_delta, tkl.f16) | ||
v_reg = tkw.read( | ||
v, | ||
elements_per_thread=LOAD_ELEMS_PER_THREAD_PV, | ||
mapping=v_mapping, | ||
) | ||
if wave_input_dtype == tkl.bf16: | ||
v_reg = tkw.cast(tkw.cast(v_reg, tkl.f32), tkl.f16) | ||
new_acc = acc * e_delta_max | ||
acc = tkw.mma(v_reg, imm_f16, new_acc) | ||
return m_j, d_j, acc | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
since this is a very specific signature, I think you can remove wave_size_dtype and set it to tkl.i64. This will also require some changes to the tests. Would you like to fix this or do you want me to take it over?