-
Notifications
You must be signed in to change notification settings - Fork 260
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Complement UT of calibration function for TF 3x API (#1945)
Signed-off-by: zehao-intel <[email protected]>
- Loading branch information
1 parent
fb85779
commit d84a93f
Showing
2 changed files
with
162 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
#!/usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
# | ||
# Copyright (c) 2024 Intel Corporation | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import math | ||
import shutil | ||
import time | ||
import unittest | ||
|
||
import numpy as np | ||
import tensorflow as tf | ||
from tensorflow import keras | ||
|
||
from neural_compressor.common import logger | ||
from neural_compressor.tensorflow.utils import version1_gte_version2 | ||
|
||
|
||
def build_model(): | ||
# Load MNIST dataset | ||
mnist = keras.datasets.mnist | ||
|
||
# 60000 images in train and 10000 images in test, but we don't need so much for ut | ||
(train_images, train_labels), (test_images, test_labels) = mnist.load_data() | ||
train_images, train_labels = train_images[:1000], train_labels[:1000] | ||
test_images, test_labels = test_images[:200], test_labels[:200] | ||
|
||
# Normalize the input image so that each pixel value is between 0 to 1. | ||
train_images = train_images / 255.0 | ||
test_images = test_images / 255.0 | ||
|
||
# Define the model architecture. | ||
model = keras.Sequential( | ||
[ | ||
keras.layers.InputLayer(input_shape=(28, 28)), | ||
keras.layers.Reshape(target_shape=(28, 28, 1)), | ||
keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation="relu", name="conv2d"), | ||
keras.layers.MaxPooling2D(pool_size=(2, 2)), | ||
keras.layers.Flatten(), | ||
keras.layers.Dense(10, name="dense"), | ||
] | ||
) | ||
# Train the digit classification model | ||
model.compile( | ||
optimizer="adam", loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=["accuracy"] | ||
) | ||
|
||
model.fit( | ||
train_images, | ||
train_labels, | ||
epochs=1, | ||
validation_split=0.1, | ||
) | ||
|
||
_, baseline_model_accuracy = model.evaluate(test_images, test_labels, verbose=0) | ||
|
||
print("Baseline test accuracy:", baseline_model_accuracy) | ||
if version1_gte_version2(tf.__version__, "2.16.1"): | ||
model.export("baseline_model") | ||
else: | ||
model.save("baseline_model") | ||
|
||
|
||
class Dataset(object): | ||
def __init__(self, batch_size=1): | ||
self.batch_size = batch_size | ||
mnist = keras.datasets.mnist | ||
(train_images, train_labels), (test_images, test_labels) = mnist.load_data() | ||
train_images, train_labels = train_images[:1000], train_labels[:1000] | ||
test_images, test_labels = test_images[:200], test_labels[:200] | ||
# Normalize the input image so that each pixel value is between 0 to 1. | ||
self.train_images = train_images / 255.0 | ||
self.test_images = test_images / 255.0 | ||
self.train_labels = train_labels | ||
self.test_labels = test_labels | ||
|
||
def __len__(self): | ||
return len(self.test_images) | ||
|
||
def __getitem__(self, idx): | ||
return self.test_images[idx], self.test_labels[idx] | ||
|
||
|
||
class MyDataloader: | ||
def __init__(self, dataset, batch_size=1): | ||
self.dataset = dataset | ||
self.batch_size = batch_size | ||
self.length = math.ceil(len(dataset) / self.batch_size) | ||
|
||
def __iter__(self): | ||
for _, (images, labels) in enumerate(self.dataset): | ||
images = np.expand_dims(images, axis=0) | ||
labels = np.expand_dims(labels, axis=0) | ||
yield (images, labels) | ||
|
||
def __len__(self): | ||
return self.length | ||
|
||
|
||
def evaluate(model): | ||
input_tensor = model.input_tensor | ||
output_tensor = model.output_tensor if len(model.output_tensor) > 1 else model.output_tensor[0] | ||
|
||
iteration = -1 | ||
calib_dataloader = MyDataloader(dataset=Dataset()) | ||
for idx, (inputs, labels) in enumerate(calib_dataloader): | ||
# dataloader should keep the order and len of inputs same with input_tensor | ||
inputs = np.array([inputs]) | ||
feed_dict = dict(zip(input_tensor, inputs)) | ||
|
||
start = time.time() | ||
predictions = model.sess.run(output_tensor, feed_dict) | ||
end = time.time() | ||
|
||
if idx + 1 == iteration: | ||
break | ||
|
||
|
||
class TestQuantizeModel(unittest.TestCase): | ||
@classmethod | ||
def setUpClass(self): | ||
build_model() | ||
self.fp32_model_path = "baseline_model" | ||
|
||
@classmethod | ||
def tearDownClass(self): | ||
shutil.rmtree(self.fp32_model_path, ignore_errors=True) | ||
|
||
def test_calib_func(self): | ||
logger.info("Run test_calib_func case...") | ||
|
||
from neural_compressor.common import set_random_seed | ||
from neural_compressor.tensorflow import StaticQuantConfig, quantize_model | ||
|
||
set_random_seed(9527) | ||
quant_config = StaticQuantConfig() | ||
q_model = quantize_model(self.fp32_model_path, quant_config, calib_func=evaluate) | ||
quantized = False | ||
for node in q_model.graph_def.node: | ||
if "Quantized" in node.op: | ||
quantized = True | ||
break | ||
|
||
self.assertEqual(quantized, True) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |