Skip to content

Commit

Permalink
Add a functional test to exercise our split out APIs
Browse files Browse the repository at this point in the history
This adds a functional test to test the entire end-to-end flow of
`ilab data generate` exercised purely from the individual pieces of
the split out SDG APIs. No actual LLM inference happens, and instead
we just mock out all the responses for the sake of testing speed /
hardware since we don't need real LLM responses to verify our APIs.

Signed-off-by: Ben Browning <[email protected]>
  • Loading branch information
bbrowning committed Jan 7, 2025
1 parent 8336e42 commit 1d8c077
Show file tree
Hide file tree
Showing 3 changed files with 141 additions and 0 deletions.
Empty file added tests/functional/__init__.py
Empty file.
86 changes: 86 additions & 0 deletions tests/functional/test_granular_api.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
# SPDX-License-Identifier: Apache-2.0

# Standard
from datetime import datetime
from unittest.mock import MagicMock
import glob
import os
import pathlib

# First Party
from instructlab.sdg import BlockRegistry
from instructlab.sdg.generate_data import (
generate_taxonomy,
mix_datasets,
postprocess_taxonomy,
preprocess_taxonomy,
)

# Third Party
import git

# Local
from ..mockllmblock import MockLLMBlock

def _clone_instructlab_taxonomy(taxonomy_dir):
taxonomy_repo_url = "https://github.com/instructlab/taxonomy"
taxonomy_commit = "dfa3afaf26f40f923cf758389719619ec9b1ddb1"
repo = git.Repo.clone_from(taxonomy_repo_url, taxonomy_dir, no_checkout=True)
repo.git.checkout(taxonomy_commit)

def test_granular_api_end_to_end(testdata_path: pathlib.Path, tmp_path: pathlib.Path):
# Registry our mock block so we can reference it in pipelines
BlockRegistry.register("MockLLMBlock")(MockLLMBlock)

# Clone a taxonomy and edit 1 file in it
taxonomy_dir = tmp_path.joinpath("taxonomy")
_clone_instructlab_taxonomy(taxonomy_dir)
changed_qna_yaml = taxonomy_dir.joinpath("knowledge", "science", "animals", "birds", "black_capped_chickadee", "qna.yaml")
with open(changed_qna_yaml, "a", encoding="utf-8") as file:
file.write("")

pipeline_dir = testdata_path.joinpath("mock_pipelines")
date_suffix = datetime.now().replace(microsecond=0).isoformat().replace(":", "_")

preprocessed_dir = tmp_path.joinpath("preprocessed")
preprocess_taxonomy(
taxonomy_dir=taxonomy_dir,
output_dir=preprocessed_dir,
)
chickadee_docs = glob.glob(
str(preprocessed_dir.joinpath("documents", "knowledge_science_*", "chickadee.md"))
)
assert chickadee_docs
chickadee_samples_path = preprocessed_dir.joinpath("knowledge_science_animals_birds_black_capped_chickadee.jsonl")
assert chickadee_samples_path.is_file()

client = MagicMock()
client.server_supports_batched = False
generated_dir = tmp_path.joinpath("generated")
generate_taxonomy(
client=client,
input_dir=preprocessed_dir,
output_dir=generated_dir,
pipeline=pipeline_dir,
)
generated_phoenix_samples_path = generated_dir.joinpath("knowledge_science_animals_birds_black_capped_chickadee.jsonl")
assert generated_phoenix_samples_path.is_file()

postprocessed_dir = tmp_path.joinpath("postprocessed")
postprocess_taxonomy(
input_dir=generated_dir,
output_dir=postprocessed_dir,
date_suffix=date_suffix,
pipeline=pipeline_dir,
)
knowledge_recipe_file = postprocessed_dir.joinpath(f"knowledge_recipe_{date_suffix}.yaml")
assert knowledge_recipe_file.is_file()
skills_recipe_file = postprocessed_dir.joinpath(f"skills_recipe_{date_suffix}.yaml")
assert skills_recipe_file.is_file()

mixed_skills_output_file = f"{postprocessed_dir}/skills_train_msgs_{date_suffix}.jsonl"
mix_datasets(
recipe_file=f"{postprocessed_dir}/skills_recipe_{date_suffix}.yaml",
output_file=mixed_skills_output_file,
)
assert pathlib.Path(mixed_skills_output_file).is_file()
55 changes: 55 additions & 0 deletions tests/mockllmblock.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
# SPDX-License-Identifier: Apache-2.0

# Standard
import random
import string

# Third Party
from datasets import Dataset

# First Party
from instructlab.sdg import LLMBlock


def _random_string(size):
return "".join(random.choices(string.ascii_lowercase, k=size))


def _add_mocked_cols(sample, block_name):
match block_name:
case "gen_questions" | "gen_grounded_questions":
sample["question"] = f"Is this a question {_random_string(8)}?"
case "eval_questions" | "eval_grounded_questions":
sample["evaluation"] = "This is an evaluation."
sample["score"] = "1"
case "gen_responses" | "gen_grounded_responses":
sample["response"] = "This is a response."
case "evaluate_qa_pair" | "evaluate_grounded_qa_pair":
sample["evaluation"] = "This is an evaluation."
sample["score"] = "2"
case "gen_contexts":
sample["context"] = f"This is a context {_random_string(8)}."
case "gen_spellcheck":
sample["spellcheck"] = sample["document"]
case "gen_knowledge":
sample["question"] = f"Is this a question {_random_string(8)}?"
sample["response"] = "This is a response."
case "eval_faithfulness_qa_pair":
sample["explanation"] = "This is an explanation."
sample["judgment"] = "YES"
case "eval_relevancy_qa_pair":
sample["feedback"] = "This is some feedback."
sample["score"] = "2"
case "eval_verify_question":
sample["explanation"] = "This is an explanation."
sample["rating"] = "1"
case _:
raise Exception(
f"Received an un-mocked LLMBlock: {block_name}. Add code in {__file__} to handle this block."
)
return sample


class MockLLMBlock(LLMBlock):
def generate(self, samples: Dataset):
return samples.map(_add_mocked_cols, fn_kwargs={"block_name": self.block_name})

0 comments on commit 1d8c077

Please sign in to comment.