-
Notifications
You must be signed in to change notification settings - Fork 43
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add a functional test to exercise our split out APIs
This adds a functional test to test the entire end-to-end flow of `ilab data generate` exercised purely from the individual pieces of the split out SDG APIs. No actual LLM inference happens, and instead we just mock out all the responses for the sake of testing speed / hardware since we don't need real LLM responses to verify our APIs. Signed-off-by: Ben Browning <[email protected]>
- Loading branch information
Showing
3 changed files
with
141 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
# Standard | ||
from datetime import datetime | ||
from unittest.mock import MagicMock | ||
import glob | ||
import os | ||
import pathlib | ||
|
||
# First Party | ||
from instructlab.sdg import BlockRegistry | ||
from instructlab.sdg.generate_data import ( | ||
generate_taxonomy, | ||
mix_datasets, | ||
postprocess_taxonomy, | ||
preprocess_taxonomy, | ||
) | ||
|
||
# Third Party | ||
import git | ||
|
||
# Local | ||
from ..mockllmblock import MockLLMBlock | ||
|
||
def _clone_instructlab_taxonomy(taxonomy_dir): | ||
taxonomy_repo_url = "https://github.com/instructlab/taxonomy" | ||
taxonomy_commit = "dfa3afaf26f40f923cf758389719619ec9b1ddb1" | ||
repo = git.Repo.clone_from(taxonomy_repo_url, taxonomy_dir, no_checkout=True) | ||
repo.git.checkout(taxonomy_commit) | ||
|
||
def test_granular_api_end_to_end(testdata_path: pathlib.Path, tmp_path: pathlib.Path): | ||
# Registry our mock block so we can reference it in pipelines | ||
BlockRegistry.register("MockLLMBlock")(MockLLMBlock) | ||
|
||
# Clone a taxonomy and edit 1 file in it | ||
taxonomy_dir = tmp_path.joinpath("taxonomy") | ||
_clone_instructlab_taxonomy(taxonomy_dir) | ||
changed_qna_yaml = taxonomy_dir.joinpath("knowledge", "science", "animals", "birds", "black_capped_chickadee", "qna.yaml") | ||
with open(changed_qna_yaml, "a", encoding="utf-8") as file: | ||
file.write("") | ||
|
||
pipeline_dir = testdata_path.joinpath("mock_pipelines") | ||
date_suffix = datetime.now().replace(microsecond=0).isoformat().replace(":", "_") | ||
|
||
preprocessed_dir = tmp_path.joinpath("preprocessed") | ||
preprocess_taxonomy( | ||
taxonomy_dir=taxonomy_dir, | ||
output_dir=preprocessed_dir, | ||
) | ||
chickadee_docs = glob.glob( | ||
str(preprocessed_dir.joinpath("documents", "knowledge_science_*", "chickadee.md")) | ||
) | ||
assert chickadee_docs | ||
chickadee_samples_path = preprocessed_dir.joinpath("knowledge_science_animals_birds_black_capped_chickadee.jsonl") | ||
assert chickadee_samples_path.is_file() | ||
|
||
client = MagicMock() | ||
client.server_supports_batched = False | ||
generated_dir = tmp_path.joinpath("generated") | ||
generate_taxonomy( | ||
client=client, | ||
input_dir=preprocessed_dir, | ||
output_dir=generated_dir, | ||
pipeline=pipeline_dir, | ||
) | ||
generated_phoenix_samples_path = generated_dir.joinpath("knowledge_science_animals_birds_black_capped_chickadee.jsonl") | ||
assert generated_phoenix_samples_path.is_file() | ||
|
||
postprocessed_dir = tmp_path.joinpath("postprocessed") | ||
postprocess_taxonomy( | ||
input_dir=generated_dir, | ||
output_dir=postprocessed_dir, | ||
date_suffix=date_suffix, | ||
pipeline=pipeline_dir, | ||
) | ||
knowledge_recipe_file = postprocessed_dir.joinpath(f"knowledge_recipe_{date_suffix}.yaml") | ||
assert knowledge_recipe_file.is_file() | ||
skills_recipe_file = postprocessed_dir.joinpath(f"skills_recipe_{date_suffix}.yaml") | ||
assert skills_recipe_file.is_file() | ||
|
||
mixed_skills_output_file = f"{postprocessed_dir}/skills_train_msgs_{date_suffix}.jsonl" | ||
mix_datasets( | ||
recipe_file=f"{postprocessed_dir}/skills_recipe_{date_suffix}.yaml", | ||
output_file=mixed_skills_output_file, | ||
) | ||
assert pathlib.Path(mixed_skills_output_file).is_file() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
# Standard | ||
import random | ||
import string | ||
|
||
# Third Party | ||
from datasets import Dataset | ||
|
||
# First Party | ||
from instructlab.sdg import LLMBlock | ||
|
||
|
||
def _random_string(size): | ||
return "".join(random.choices(string.ascii_lowercase, k=size)) | ||
|
||
|
||
def _add_mocked_cols(sample, block_name): | ||
match block_name: | ||
case "gen_questions" | "gen_grounded_questions": | ||
sample["question"] = f"Is this a question {_random_string(8)}?" | ||
case "eval_questions" | "eval_grounded_questions": | ||
sample["evaluation"] = "This is an evaluation." | ||
sample["score"] = "1" | ||
case "gen_responses" | "gen_grounded_responses": | ||
sample["response"] = "This is a response." | ||
case "evaluate_qa_pair" | "evaluate_grounded_qa_pair": | ||
sample["evaluation"] = "This is an evaluation." | ||
sample["score"] = "2" | ||
case "gen_contexts": | ||
sample["context"] = f"This is a context {_random_string(8)}." | ||
case "gen_spellcheck": | ||
sample["spellcheck"] = sample["document"] | ||
case "gen_knowledge": | ||
sample["question"] = f"Is this a question {_random_string(8)}?" | ||
sample["response"] = "This is a response." | ||
case "eval_faithfulness_qa_pair": | ||
sample["explanation"] = "This is an explanation." | ||
sample["judgment"] = "YES" | ||
case "eval_relevancy_qa_pair": | ||
sample["feedback"] = "This is some feedback." | ||
sample["score"] = "2" | ||
case "eval_verify_question": | ||
sample["explanation"] = "This is an explanation." | ||
sample["rating"] = "1" | ||
case _: | ||
raise Exception( | ||
f"Received an un-mocked LLMBlock: {block_name}. Add code in {__file__} to handle this block." | ||
) | ||
return sample | ||
|
||
|
||
class MockLLMBlock(LLMBlock): | ||
def generate(self, samples: Dataset): | ||
return samples.map(_add_mocked_cols, fn_kwargs={"block_name": self.block_name}) |