Skip to content

Commit

Permalink
[Refactor] Refactor codebase (open-mmlab#220)
Browse files Browse the repository at this point in the history
* [WIP] Refactor v2.0 (open-mmlab#163)

* Refactor backend wrapper

* Refactor mmdet.inference

* Fix

* merge

* refactor utils

* Use deployer and deploy_model to manage pipeline

* Resolve comments

* Add a real inference api function

* rename wrappers

* Set execute to private method

* Rename deployer deploy_model

* Refactor task

* remove type hint

* lint

* Resolve comments

* resolve comments

* lint

* docstring

* [Fix]: Fix bugs in details in refactor branch (open-mmlab#192)

* [WIP] Refactor v2.0 (open-mmlab#163)

* Refactor backend wrapper

* Refactor mmdet.inference

* Fix

* merge

* refactor utils

* Use deployer and deploy_model to manage pipeline

* Resolve comments

* Add a real inference api function

* rename wrappers

* Set execute to private method

* Rename deployer deploy_model

* Refactor task

* remove type hint

* lint

* Resolve comments

* resolve comments

* lint

* docstring

* Fix errors

* lint

* resolve comments

* fix bugs

* conflict

* lint and typo

* Resolve comment

* refactor mmseg (open-mmlab#201)

* support mmseg

* fix docstring

* fix docstring

* [Refactor]: Get the count of backend files (open-mmlab#202)

* Fix backend files

* resolve comments

* lint

* Fix ncnn

* [Refactor]: Refactor folders of mmdet (open-mmlab#200)

* Move folders

* lint

* test object detection model

* lint

* reset changes

* fix openvino

* resolve comments

* __init__.py

* Fix path

* [Refactor]: move mmseg (open-mmlab#206)

* [Refactor]: Refactor mmedit (open-mmlab#205)

* feature mmedit

* edit2.0

* edit

* refactor mmedit

* fix __init__.py

* fix __init__

* fix formai

* fix comment

* fix comment

* Fix wrong func_name of ConvFCBBoxHead (open-mmlab#209)

* [Refactor]: Refactor mmdet unit test (open-mmlab#207)

* Move folders

* lint

* test object detection model

* lint

* WIP

* remove print

* finish unit test

* Fix tests

* resolve comments

* Add mask test

* lint

* resolve comments

* Refine cfg file

* Move files

* add files

* Fix path

* [Unittest]: Refine the unit tests in mmdet open-mmlab#214

* [Refactor] refactor mmocr to mmdeploy/codebase (open-mmlab#213)

* refactor mmocr to mmdeploy/codebase

* fix docstring of show_result

* fix docstring of visualize

* refine docstring

* replace print with logging

* refince codes

* resolve comments

* resolve comments

* [Refactor]: mmseg  tests (open-mmlab#210)

* refactor mmseg tests

* rename test_codebase

* update

* add model.py

* fix

* [Refactor] Refactor mmcls and the package (open-mmlab#217)

* refactor mmcls

* fix yapf

* fix isort

* refactor-mmcls-package

* fix print to logging

* fix docstrings according to others comments

* fix comments

* fix comments

* fix allentdans comment in pr215

* remove mmocr init

* [Refactor] Refactor mmedit tests (open-mmlab#212)

* feature mmedit

* edit2.0

* edit

* refactor mmedit

* fix __init__.py

* fix __init__

* fix formai

* fix comment

* fix comment

* buff

* edit test and code refactor

* refactor dir

* refactor tests/mmedit

* fix docstring

* add test coverage

* fix lint

* fix comment

* fix comment

* Update typehint (open-mmlab#216)

* update type hint

* update docstring

* update

* remove file

* fix ppl

* Refine get_predefined_partition_cfg

* fix tensorrt version > 8

* move parse_cuda_device_id to device.py

* Fix cascade

* onnx2ncnn docstring

Co-authored-by: Yifan Zhou <[email protected]>
Co-authored-by: RunningLeon <[email protected]>
Co-authored-by: VVsssssk <[email protected]>
Co-authored-by: AllentDan <[email protected]>
Co-authored-by: hanrui1sensetime <[email protected]>
  • Loading branch information
6 people authored Nov 25, 2021
1 parent d742b42 commit 3a785f1
Show file tree
Hide file tree
Showing 220 changed files with 6,698 additions and 5,837 deletions.
2 changes: 1 addition & 1 deletion backend_ops/ncnn/pyncnn_ext/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -11,4 +11,4 @@ pybind11_add_module(ncnn_ext ncnn_ext.cpp)
target_link_libraries(ncnn_ext PUBLIC ncnn ${SHARED_TARGET})
set_target_properties(
ncnn_ext PROPERTIES LIBRARY_OUTPUT_DIRECTORY
${CMAKE_SOURCE_DIR}/mmdeploy/apis/ncnn)
${CMAKE_SOURCE_DIR}/mmdeploy/backend/ncnn)
25 changes: 0 additions & 25 deletions mmdeploy/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,28 +7,3 @@
importlib.import_module('mmdeploy.mmcv')
else:
logging.debug('mmcv is not installed.')

if importlib.util.find_spec('mmcls'):
importlib.import_module('mmdeploy.mmcls')
else:
logging.debug('mmcls is not installed.')

if importlib.util.find_spec('mmdet'):
importlib.import_module('mmdeploy.mmdet')
else:
logging.debug('mmdet is not installed.')

if importlib.util.find_spec('mmseg'):
importlib.import_module('mmdeploy.mmseg')
else:
logging.debug('mmseg is not installed.')

if importlib.util.find_spec('mmocr'):
importlib.import_module('mmdeploy.mmocr')
else:
logging.debug('mmocr is not installed.')

if importlib.util.find_spec('mmedit'):
importlib.import_module('mmdeploy.mmedit')
else:
logging.debug('mmedit is not installed.')
12 changes: 5 additions & 7 deletions mmdeploy/apis/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,13 +2,11 @@
from .extract_model import extract_model
from .inference import inference_model
from .pytorch2onnx import torch2onnx, torch2onnx_impl
from .test import post_process_outputs, single_gpu_test
from .utils import (build_dataloader, build_dataset, get_tensor_from_input,
init_backend_model)
from .utils import build_task_processor, get_predefined_partition_cfg
from .visualize import visualize_model

__all__ = [
'create_calib_table', 'torch2onnx_impl', 'torch2onnx', 'extract_model',
'inference_model', 'init_backend_model', 'single_gpu_test',
'post_process_outputs', 'build_dataset', 'get_tensor_from_input',
'build_dataloader'
'create_calib_table', 'extract_model', 'inference_model', 'torch2onnx',
'torch2onnx_impl', 'build_task_processor', 'get_predefined_partition_cfg',
'visualize_model'
]
29 changes: 14 additions & 15 deletions mmdeploy/apis/calibration.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,9 +7,7 @@

from mmdeploy.core import (RewriterContext, patch_model,
reset_mark_function_count)
from mmdeploy.utils import cfg_apply_marks, get_codebase, load_config
from .utils import (build_dataloader, build_dataset, get_tensor_from_input,
init_pytorch_model, run_inference)
from mmdeploy.utils import cfg_apply_marks, load_config


def create_calib_table(calib_file: str,
Expand Down Expand Up @@ -46,32 +44,33 @@ def create_calib_table(calib_file: str,
# load dataset_cfg if necessary
dataset_cfg = load_config(dataset_cfg)[0]

codebase = get_codebase(deploy_cfg)
from mmdeploy.apis.utils import build_task_processor
task_processor = build_task_processor(model_cfg, deploy_cfg, device)

apply_marks = cfg_apply_marks(deploy_cfg)
backend = 'default'
model = init_pytorch_model(
codebase, model_cfg, model_checkpoint, device=device)
dataset = build_dataset(codebase, dataset_cfg, dataset_type)
model = task_processor.init_pytorch_model(model_checkpoint)
dataset = task_processor.build_dataset(dataset_cfg, dataset_type)

# patch model
patched_model = patch_model(model, cfg=deploy_cfg, backend=backend)

with h5py.File(calib_file, mode='w') as calib_file:
calib_data_group = calib_file.create_group('calib_data')
with h5py.File(calib_file, mode='w') as file:
calib_data_group = file.create_group('calib_data')

if not apply_marks:
# create end2end group
input_data_group = calib_data_group.create_group('end2end')
input_group = input_data_group.create_group('input')
dataloader = build_dataloader(
codebase, dataset, 1, 1, dist=False, shuffle=False)
dataloader = task_processor.build_dataloader(
dataset, 1, 1, dist=False, shuffle=False)
patched_model = MMDataParallel(patched_model, device_ids=[device_id])
prog_bar = mmcv.ProgressBar(len(dataset))
for data_id, input_data in enumerate(dataloader):

if not apply_marks:
# save end2end data
input_tensor = get_tensor_from_input(codebase, input_data)
input_tensor = task_processor.get_tensor_from_input(input_data)
input_ndarray = input_tensor.detach().cpu().numpy()
input_group.create_dataset(
str(data_id),
Expand All @@ -84,10 +83,10 @@ def create_calib_table(calib_file: str,
cfg=deploy_cfg,
backend=backend,
create_calib=True,
calib_file=calib_file,
calib_file=file,
data_id=data_id):
reset_mark_function_count()
_ = run_inference(codebase, input_data, patched_model)
calib_file.flush()
_ = task_processor.run_inference(patched_model, input_data)
file.flush()

prog_bar.update()
2 changes: 1 addition & 1 deletion mmdeploy/apis/extract_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ def extract_model(model: Union[str, onnx.ModelProto],
start_name_map: Optional[Dict[str, str]] = None,
end_name_map: Optional[Dict[str, str]] = None,
dynamic_axes: Optional[Dict[str, Dict[int, str]]] = None,
save_file: Optional[str] = None):
save_file: Optional[str] = None) -> onnx.ModelProto:
"""Extract sub-model from an ONNX model.
The sub-model is defined by the names of the input and output tensors
Expand Down
65 changes: 15 additions & 50 deletions mmdeploy/apis/inference.py
Original file line number Diff line number Diff line change
@@ -1,75 +1,40 @@
from typing import Optional, Sequence, Union
from typing import Any, Sequence, Union

import mmcv
import numpy as np
import torch

from mmdeploy.utils import (Backend, get_backend, get_codebase,
get_input_shape, get_task_type, load_config)
from .utils import (create_input, init_backend_model, init_pytorch_model,
run_inference, visualize)
from mmdeploy.utils import get_input_shape, load_config


def inference_model(model_cfg: Union[str, mmcv.Config],
deploy_cfg: Union[str, mmcv.Config],
model: Union[str, Sequence[str], torch.nn.Module],
img: Union[str, np.ndarray],
device: str,
backend: Optional[Backend] = None,
output_file: Optional[str] = None,
show_result: bool = False):
backend_files: Sequence[str], img: Union[str, np.ndarray],
device: str) -> Any:
"""Run inference with PyTorch or backend model and show results.
Args:
model_cfg (str | mmcv.Config): Model config file or Config object.
deploy_cfg (str | mmcv.Config): Deployment config file or Config
object.
model (str | list[str], torch.nn.Module): Input model or file(s).
backend_files (Sequence[str]): Input backend model file(s).
img (str | np.ndarray): Input image file or numpy array for inference.
device (str): A string specifying device type.
backend (Backend): Specifying backend type, defaults to `None`.
output_file (str): Output file to save visualized image, defaults to
`None`. Only valid if `show_result` is set to `False`.
show_result (bool): Whether to show plotted image in windows, defaults
to `False`.
Returns:
Any: The inference results
"""
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)

codebase = get_codebase(deploy_cfg)
task = get_task_type(deploy_cfg)
input_shape = get_input_shape(deploy_cfg)
if backend is None:
backend = get_backend(deploy_cfg)

if isinstance(model, str):
model = [model]
from mmdeploy.apis.utils import build_task_processor
task_processor = build_task_processor(model_cfg, deploy_cfg, device)

if isinstance(model, (list, tuple)):
assert len(model) > 0, 'Model should have at least one element.'
assert all([isinstance(m, str) for m in model]), 'All elements in the \
list should be str'
model = task_processor.init_backend_model(backend_files)

if backend == Backend.PYTORCH:
model = init_pytorch_model(codebase, model_cfg, model[0], device)
else:
device_id = -1 if device == 'cpu' else 0
model = init_backend_model(
model,
model_cfg=model_cfg,
deploy_cfg=deploy_cfg,
device_id=device_id)

model_inputs, _ = create_input(codebase, task, model_cfg, img, input_shape,
device)
input_shape = get_input_shape(deploy_cfg)
model_inputs, _ = task_processor.create_input(img, input_shape)

with torch.no_grad():
result = run_inference(codebase, model_inputs, model)
result = task_processor.run_inference(model, model_inputs)

visualize(
codebase,
img,
result=result,
model=model,
output_file=output_file,
backend=backend,
show_result=show_result)
return result
30 changes: 5 additions & 25 deletions mmdeploy/apis/ncnn/__init__.py
Original file line number Diff line number Diff line change
@@ -1,28 +1,8 @@
import importlib
import os.path as osp

from .init_plugins import get_onnx2ncnn_path, get_ops_path

__all__ = ['get_ops_path', 'get_onnx2ncnn_path']


def is_available():
"""Check whether ncnn with extension is installed.
Returns:
bool: True if ncnn and its extension are installed.
"""
ncnn_ops_path = get_ops_path()
if not osp.exists(ncnn_ops_path):
return False
has_pyncnn = importlib.util.find_spec('ncnn') is not None
has_pyncnn_ext = importlib.util.find_spec(
'mmdeploy.apis.ncnn.ncnn_ext') is not None

return has_pyncnn and has_pyncnn_ext
from mmdeploy.backend.ncnn import is_available

__all__ = ['is_available']

if is_available():
from .ncnn_utils import NCNNWrapper

__all__ += ['NCNNWrapper']
from mmdeploy.backend.ncnn.onnx2ncnn import (onnx2ncnn,
get_output_model_file)
__all__ += ['onnx2ncnn', 'get_output_model_file']
23 changes: 2 additions & 21 deletions mmdeploy/apis/onnxruntime/__init__.py
Original file line number Diff line number Diff line change
@@ -1,22 +1,3 @@
import importlib
import os.path as osp
from mmdeploy.backend.onnxruntime import is_available

from .init_plugins import get_ops_path


def is_available():
"""Check whether onnxruntime and its custom ops are installed.
Returns:
bool: True if onnxruntime package is installed and its
custom ops are compiled.
"""
onnxruntime_op_path = get_ops_path()
if not osp.exists(onnxruntime_op_path):
return False
return importlib.util.find_spec('onnxruntime') is not None


if is_available():
from .onnxruntime_utils import ORTWrapper
__all__ = ['get_ops_path', 'ORTWrapper']
__all__ = ['is_available']
22 changes: 7 additions & 15 deletions mmdeploy/apis/openvino/__init__.py
Original file line number Diff line number Diff line change
@@ -1,19 +1,11 @@
import importlib


def is_available() -> bool:
"""Checking if OpenVINO is installed.
Returns:
bool: True if OpenVINO is installed.
"""
return importlib.util.find_spec('openvino') is not None
from mmdeploy.backend.openvino import is_available

__all__ = ['is_available']

if is_available():
from .openvino_utils import OpenVINOWrapper, get_input_shape_from_cfg
from .onnx2openvino import (onnx2openvino, get_output_model_file)
__all__ = [
'OpenVINOWrapper', 'onnx2openvino', 'get_output_model_file',
'get_input_shape_from_cfg'
from mmdeploy.backend.openvino.onnx2openvino \
import onnx2openvino, get_output_model_file
from .utils import get_input_shape_from_cfg
__all__ += [
'onnx2openvino', 'get_output_model_file', 'get_input_shape_from_cfg'
]
22 changes: 22 additions & 0 deletions mmdeploy/apis/openvino/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
from typing import List

import mmcv


def get_input_shape_from_cfg(config: mmcv.Config) -> List[int]:
"""Get the input shape from the model config for OpenVINO Model Optimizer.
Args:
config (mmcv.Config): Model config.
Returns:
List[int]: The input shape in [1, 3, H, W] format from config
or [1, 3, 800, 1344].
"""
shape = []
test_pipeline = config.get('test_pipeline', None)
if test_pipeline is not None:
img_scale = test_pipeline[1]['img_scale']
shape = [1, 3, img_scale[1], img_scale[0]]
else:
shape = [1, 3, 800, 1344]
return shape
18 changes: 5 additions & 13 deletions mmdeploy/apis/ppl/__init__.py
Original file line number Diff line number Diff line change
@@ -1,16 +1,8 @@
import importlib


def is_available():
"""Check whether ppl is installed.
Returns:
bool: True if ppl package is installed.
"""
return importlib.util.find_spec('pyppl') is not None
from mmdeploy.backend.ppl import is_available

__all__ = ['is_available']

if is_available():
from .ppl_utils import PPLWrapper, register_engines
from .onnx2ppl import onnx2ppl
__all__ = ['register_engines', 'PPLWrapper', 'onnx2ppl']
from mmdeploy.backend.ppl import onnx2ppl

__all__ += ['onnx2ppl']
16 changes: 7 additions & 9 deletions mmdeploy/apis/pytorch2onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,8 @@
import torch

from mmdeploy.core import RewriterContext, patch_model
from mmdeploy.utils import (get_backend, get_codebase, get_input_shape,
get_onnx_config, get_task_type, load_config)
from .utils import create_input, init_pytorch_model
from mmdeploy.utils import (get_backend, get_input_shape, get_onnx_config,
load_config)


def torch2onnx_impl(model: torch.nn.Module, input: torch.Tensor,
Expand Down Expand Up @@ -74,14 +73,13 @@ def torch2onnx(img: Any,
mmcv.mkdir_or_exist(osp.abspath(work_dir))
output_file = osp.join(work_dir, save_file)

codebase = get_codebase(deploy_cfg)
task = get_task_type(deploy_cfg)
input_shape = get_input_shape(deploy_cfg)

torch_model = init_pytorch_model(codebase, model_cfg, model_checkpoint,
device)
data, model_inputs = create_input(codebase, task, model_cfg, img,
input_shape, device)
from mmdeploy.apis import build_task_processor
task_processor = build_task_processor(model_cfg, deploy_cfg, device)

torch_model = task_processor.init_pytorch_model(model_checkpoint)
data, model_inputs = task_processor.create_input(img, input_shape)
if not isinstance(model_inputs, torch.Tensor):
model_inputs = model_inputs[0]

Expand Down
Loading

0 comments on commit 3a785f1

Please sign in to comment.