Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update vlm-intro.mdx #362

Merged
merged 1 commit into from
Oct 30, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion chapters/en/unit4/multimodal-models/vlm-intro.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -94,4 +94,4 @@ One more such dataset called **Winoground** was designed to figure out how good
## What's Next?
The community is moving fast and we can see already lot of amazing work like [FLAVA](https://arxiv.org/abs/2112.04482) which tries to have a single "foundational" model for all the target modalities at once. This is one possible scenario for the future - modality-agnostic foundation models that can read and generate many modalities! But maybe we also see other alternatives developing, one thing we can say for sure is . there is an interesting future ahead.

To capture more on these recent advances feel free follow the HF's [Transformers Library](https://huggingface.co/docs/transformers/index), and [Diffusers Library](https://huggingface.co/docs/diffusers/index) where we try to add recent advances and models as fast as possible! If you feel like we are missing something important, you can also open an issue for these libraries and contribute code yourself.
To capture more on these recent advances feel free to follow the HF's [Transformers Library](https://huggingface.co/docs/transformers/index), and [Diffusers Library](https://huggingface.co/docs/diffusers/index) where we try to add recent advances and models as fast as possible! If you feel like we are missing something important, you can also open an issue for these libraries and contribute code yourself.
Loading