Skip to content

LogTAD: Unsupervised Cross-system Log Anomaly Detection via Domain Adaptation (CIKM 2021)

License

Notifications You must be signed in to change notification settings

hanxiao0607/LogTAD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

License Python 3.9 Hits

LogTAD: Unsupervised Cross-system Log Anomaly Detection via Domain Adaptation

A Pytorch implementation of LogTAD.

Configuration

  • Ubuntu 20.04
  • NVIDIA driver 460.73.01
  • CUDA 11.2
  • Python 3.9
  • PyTorch 1.9.0

Installation

This code requires the packages listed in requirements.txt. A virtual environment is recommended to run this code

On macOS and Linux:

python3 -m pip install --user virtualenv
python3 -m venv env
source env/bin/activate
pip install -r requirements.txt
deactivate

Reference: https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/

Instructions

LogTAD and other baseline models are implemented on BGL and Thunderbird datasets

Clone the template project, replacing my-project with the name of the project you are creating:

    git clone https://github.com/hanxiao0607/LogTAD.git my-project
    cd my-project

Run and test:

    python3 main_LogTAD.py

Citation

@inproceedings{han2021unsupervised,
  title={Unsupervised Cross-system Log Anomaly Detection via Domain Adaptation},
  author={Han, Xiao and Yuan, Shuhan},
  booktitle={Proceedings of the 30th ACM International Conference on Information \& Knowledge Management},
  pages={3068--3072},
  year={2021}
}

About

LogTAD: Unsupervised Cross-system Log Anomaly Detection via Domain Adaptation (CIKM 2021)

Topics

Resources

License

Stars

Watchers

Forks

Languages