A Pytorch implementation of LogTAD.
- Ubuntu 20.04
- NVIDIA driver 460.73.01
- CUDA 11.2
- Python 3.9
- PyTorch 1.9.0
This code requires the packages listed in requirements.txt. A virtual environment is recommended to run this code
On macOS and Linux:
python3 -m pip install --user virtualenv
python3 -m venv env
source env/bin/activate
pip install -r requirements.txt
deactivate
Reference: https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/
LogTAD and other baseline models are implemented on BGL and Thunderbird datasets
Clone the template project, replacing my-project
with the name of the project you are creating:
git clone https://github.com/hanxiao0607/LogTAD.git my-project
cd my-project
Run and test:
python3 main_LogTAD.py
@inproceedings{han2021unsupervised,
title={Unsupervised Cross-system Log Anomaly Detection via Domain Adaptation},
author={Han, Xiao and Yuan, Shuhan},
booktitle={Proceedings of the 30th ACM International Conference on Information \& Knowledge Management},
pages={3068--3072},
year={2021}
}