forked from chaitjo/learning-paradigms-for-tsp
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
134 changed files
with
11,447 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
import math | ||
import torch | ||
import os | ||
import argparse | ||
import numpy as np | ||
import itertools | ||
from tqdm import tqdm | ||
from utils import load_model, move_to | ||
from utils.data_utils import save_dataset | ||
from torch.utils.data import DataLoader | ||
import time | ||
from datetime import timedelta | ||
from utils.functions import parse_softmax_temperature | ||
mp = torch.multiprocessing.get_context('spawn') | ||
|
||
import warnings | ||
warnings.filterwarnings("ignore", message="indexing with dtype torch.uint8 is now deprecated, please use a dtype torch.bool instead.") | ||
|
||
|
||
def get_best(sequences, cost, ids=None, batch_size=None): | ||
""" | ||
Ids contains [0, 0, 0, 1, 1, 2, ..., n, n, n] if 3 solutions found for 0th instance, 2 for 1st, etc | ||
:param sequences: | ||
:param lengths: | ||
:param ids: | ||
:return: list with n sequences and list with n lengths of solutions | ||
""" | ||
if ids is None: | ||
idx = cost.argmin() | ||
return sequences[idx:idx+1, ...], cost[idx:idx+1, ...] | ||
|
||
splits = np.hstack([0, np.where(ids[:-1] != ids[1:])[0] + 1]) | ||
mincosts = np.minimum.reduceat(cost, splits) | ||
|
||
group_lengths = np.diff(np.hstack([splits, len(ids)])) | ||
all_argmin = np.flatnonzero(np.repeat(mincosts, group_lengths) == cost) | ||
result = np.full(len(group_lengths) if batch_size is None else batch_size, -1, dtype=int) | ||
|
||
result[ids[all_argmin[::-1]]] = all_argmin[::-1] | ||
|
||
return [sequences[i] if i >= 0 else None for i in result], [cost[i] if i >= 0 else math.inf for i in result] | ||
|
||
|
||
def eval_dataset_mp(args): | ||
(dataset_path, width, softmax_temp, opts, i, num_processes) = args | ||
|
||
model, _ = load_model(opts.model) | ||
val_size = opts.val_size // num_processes | ||
dataset = model.problem.make_dataset(filename=dataset_path, num_samples=val_size, offset=opts.offset + val_size * i) | ||
device = torch.device("cuda:{}".format(i)) | ||
|
||
return _eval_dataset(model, dataset, width, softmax_temp, opts, device) | ||
|
||
|
||
def eval_dataset(dataset_path, width, softmax_temp, opts): | ||
# Even with multiprocessing, we load the model here since it contains the name where to write results | ||
model, _ = load_model(opts.model) | ||
use_cuda = torch.cuda.is_available() and not opts.no_cuda | ||
model.use_cuda = use_cuda | ||
if opts.multiprocessing: | ||
assert use_cuda, "Can only do multiprocessing with cuda" | ||
num_processes = torch.cuda.device_count() | ||
assert opts.val_size % num_processes == 0 | ||
|
||
with mp.Pool(num_processes) as pool: | ||
results = list(itertools.chain.from_iterable(pool.map( | ||
eval_dataset_mp, | ||
[(dataset_path, width, softmax_temp, opts, i, num_processes) for i in range(num_processes)] | ||
))) | ||
|
||
else: | ||
device = torch.device("cuda:0" if use_cuda else "cpu") | ||
dataset = model.problem.make_dataset(filename=dataset_path, num_samples=opts.val_size, offset=opts.offset) | ||
results = _eval_dataset(model, dataset, width, softmax_temp, opts, device) | ||
|
||
# This is parallelism, even if we use multiprocessing (we report as if we did not use multiprocessing, e.g. 1 GPU) | ||
parallelism = opts.eval_batch_size | ||
|
||
costs, tours, durations = zip(*results) # Not really costs since they should be negative | ||
|
||
print("Average cost: {} +- {}".format(np.mean(costs), 2 * np.std(costs) / np.sqrt(len(costs)))) | ||
print("Average serial duration: {} +- {}".format( | ||
np.mean(durations), 2 * np.std(durations) / np.sqrt(len(durations)))) | ||
print("Average parallel duration: {}".format(np.mean(durations) / parallelism)) | ||
print("Calculated total duration: {}".format(timedelta(seconds=int(np.sum(durations) / parallelism)))) | ||
|
||
dataset_basename, ext = os.path.splitext(os.path.split(dataset_path)[-1]) | ||
model_name = "_".join(os.path.normpath(os.path.splitext(opts.model)[0]).split(os.sep)[-2:]) | ||
if opts.o is None: | ||
results_dir = os.path.join(opts.results_dir, model.problem.NAME, dataset_basename) | ||
os.makedirs(results_dir, exist_ok=True) | ||
|
||
out_file = os.path.join(results_dir, "{}-{}-{}{}-t{}-{}-{}{}".format( | ||
dataset_basename, model_name, | ||
opts.decode_strategy, | ||
width if opts.decode_strategy != 'greedy' else '', | ||
softmax_temp, opts.offset, opts.offset + len(costs), ext | ||
)) | ||
else: | ||
out_file = opts.o | ||
|
||
assert opts.f or not os.path.isfile( | ||
out_file), "File already exists! Try running with -f option to overwrite." | ||
|
||
save_dataset((results, parallelism), out_file) | ||
|
||
return costs, tours, durations | ||
|
||
|
||
def _eval_dataset(model, dataset, width, softmax_temp, opts, device): | ||
|
||
model.to(device) | ||
model.eval() | ||
|
||
model.set_decode_type( | ||
"greedy" if opts.decode_strategy in ('bs', 'greedy') else "sampling", | ||
temp=softmax_temp) | ||
|
||
dataloader = DataLoader(dataset, batch_size=opts.eval_batch_size) | ||
|
||
results = [] | ||
for batch in tqdm(dataloader, disable=opts.no_progress_bar, ascii=True): | ||
if model.problem.NAME is "tspsl": | ||
batch = move_to(batch["nodes_coord"], device) | ||
else: | ||
batch = move_to(batch, device) | ||
|
||
start = time.time() | ||
with torch.no_grad(): | ||
if opts.decode_strategy in ('sample', 'greedy'): | ||
if opts.decode_strategy == 'greedy': | ||
assert width == 0, "Do not set width when using greedy" | ||
assert opts.eval_batch_size <= opts.max_calc_batch_size, \ | ||
"eval_batch_size should be smaller than calc batch size" | ||
batch_rep = 1 | ||
iter_rep = 1 | ||
elif width * opts.eval_batch_size > opts.max_calc_batch_size: | ||
assert opts.eval_batch_size == 1 | ||
assert width % opts.max_calc_batch_size == 0 | ||
batch_rep = opts.max_calc_batch_size | ||
iter_rep = width // opts.max_calc_batch_size | ||
else: | ||
batch_rep = width | ||
iter_rep = 1 | ||
assert batch_rep > 0 | ||
# This returns (batch_size, iter_rep shape) | ||
sequences, costs = model.sample_many(batch, batch_rep=batch_rep, iter_rep=iter_rep) | ||
batch_size = len(costs) | ||
ids = torch.arange(batch_size, dtype=torch.int64, device=costs.device) | ||
else: | ||
assert opts.decode_strategy == 'bs' | ||
|
||
cum_log_p, sequences, costs, ids, batch_size = model.beam_search( | ||
batch, beam_size=width, | ||
compress_mask=opts.compress_mask, | ||
max_calc_batch_size=opts.max_calc_batch_size | ||
) | ||
|
||
if sequences is None: | ||
sequences = [None] * batch_size | ||
costs = [math.inf] * batch_size | ||
else: | ||
sequences, costs = get_best( | ||
sequences.cpu().numpy(), costs.cpu().numpy(), | ||
ids.cpu().numpy() if ids is not None else None, | ||
batch_size | ||
) | ||
duration = time.time() - start | ||
for seq, cost in zip(sequences, costs): | ||
if model.problem.NAME in ("tsp", "tspsl"): | ||
seq = seq.tolist() # No need to trim as all are same length | ||
elif model.problem.NAME in ("cvrp", "sdvrp"): | ||
seq = np.trim_zeros(seq).tolist() + [0] # Add depot | ||
elif model.problem.NAME in ("op", "pctsp"): | ||
seq = np.trim_zeros(seq) # We have the convention to exclude the depot | ||
else: | ||
assert False, "Unkown problem: {}".format(model.problem.NAME) | ||
# Note VRP only | ||
results.append((cost, seq, duration)) | ||
|
||
return results | ||
|
||
|
||
if __name__ == "__main__": | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument("datasets", nargs='+', help="Filename of the dataset(s) to evaluate") | ||
parser.add_argument("-f", action='store_true', help="Set true to overwrite") | ||
parser.add_argument("-o", default=None, help="Name of the results file to write") | ||
parser.add_argument('--val_size', type=int, default=10000, | ||
help='Number of instances used for reporting validation performance') | ||
parser.add_argument('--offset', type=int, default=0, | ||
help='Offset where to start in dataset (default 0)') | ||
parser.add_argument('--eval_batch_size', type=int, default=1024, | ||
help="Batch size to use during (baseline) evaluation") | ||
parser.add_argument('--width', type=int, nargs='+', | ||
help='Sizes of beam to use for beam search (or number of samples for sampling), ' | ||
'0 to disable (default), -1 for infinite') | ||
parser.add_argument('--decode_strategy', type=str, | ||
help='Beam search (bs), Sampling (sample) or Greedy (greedy)') | ||
parser.add_argument('--softmax_temperature', type=parse_softmax_temperature, default=1, | ||
help="Softmax temperature (sampling or bs)") | ||
parser.add_argument('--model', type=str) | ||
parser.add_argument('--no_cuda', action='store_true', help='Disable CUDA') | ||
parser.add_argument('--no_progress_bar', action='store_true', help='Disable progress bar') | ||
parser.add_argument('--compress_mask', action='store_true', help='Compress mask into long') | ||
parser.add_argument('--max_calc_batch_size', type=int, default=10000, help='Size for subbatches') | ||
parser.add_argument('--results_dir', default='results', help="Name of results directory") | ||
parser.add_argument('--multiprocessing', action='store_true', | ||
help='Use multiprocessing to parallelize over multiple GPUs') | ||
|
||
opts = parser.parse_args() | ||
|
||
assert opts.o is None or (len(opts.datasets) == 1 and len(opts.width) <= 1), \ | ||
"Cannot specify result filename with more than one dataset or more than one width" | ||
|
||
widths = opts.width if opts.width is not None else [0] | ||
|
||
for width in widths: | ||
for dataset_path in opts.datasets: | ||
eval_dataset(dataset_path, width, opts.softmax_temperature, opts) |
Oops, something went wrong.