Skip to content

Commit

Permalink
Added code/files
Browse files Browse the repository at this point in the history
  • Loading branch information
chaitjo committed Nov 4, 2019
1 parent 9d2c714 commit 5e3eb2d
Show file tree
Hide file tree
Showing 134 changed files with 11,447 additions and 2 deletions.
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
# On Learning Paradigms for the Travelling Salesman Problem

This repository contains code for the paper
[**"On Learning Paradigms for the Travelling Salesman Problem"**]()
[**"On Learning Paradigms for the Travelling Salesman Problem"**](https://arxiv.org/abs/1910.07210)
by Chaitanya K. Joshi, Thomas Laurent and Xavier Bresson, presented at the [NeurIPS 2019 Graph Representation Learning Workshop](https://grlearning.github.io/overview/).

We explore the impact of learning paradigms on training deep neural networks for the Travelling Salesman Problem.
We design controlled experiments to train supervised learning (SL) and reinforcement learning (RL) models on fixed graph sizes up to 100 nodes, and evaluate them on variable sized graphs up to 500 nodes.
Beyond not needing labelled data, out results reveal favorable properties of RL over SL:
Beyond not needing labelled data, our results reveal favorable properties of RL over SL:
RL training leads to better *emergent* generalization to variable graph sizes and
is a key component for learning scale-invariant solvers for novel combinatorial problems.

Expand Down
221 changes: 221 additions & 0 deletions eval.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,221 @@
import math
import torch
import os
import argparse
import numpy as np
import itertools
from tqdm import tqdm
from utils import load_model, move_to
from utils.data_utils import save_dataset
from torch.utils.data import DataLoader
import time
from datetime import timedelta
from utils.functions import parse_softmax_temperature
mp = torch.multiprocessing.get_context('spawn')

import warnings
warnings.filterwarnings("ignore", message="indexing with dtype torch.uint8 is now deprecated, please use a dtype torch.bool instead.")


def get_best(sequences, cost, ids=None, batch_size=None):
"""
Ids contains [0, 0, 0, 1, 1, 2, ..., n, n, n] if 3 solutions found for 0th instance, 2 for 1st, etc
:param sequences:
:param lengths:
:param ids:
:return: list with n sequences and list with n lengths of solutions
"""
if ids is None:
idx = cost.argmin()
return sequences[idx:idx+1, ...], cost[idx:idx+1, ...]

splits = np.hstack([0, np.where(ids[:-1] != ids[1:])[0] + 1])
mincosts = np.minimum.reduceat(cost, splits)

group_lengths = np.diff(np.hstack([splits, len(ids)]))
all_argmin = np.flatnonzero(np.repeat(mincosts, group_lengths) == cost)
result = np.full(len(group_lengths) if batch_size is None else batch_size, -1, dtype=int)

result[ids[all_argmin[::-1]]] = all_argmin[::-1]

return [sequences[i] if i >= 0 else None for i in result], [cost[i] if i >= 0 else math.inf for i in result]


def eval_dataset_mp(args):
(dataset_path, width, softmax_temp, opts, i, num_processes) = args

model, _ = load_model(opts.model)
val_size = opts.val_size // num_processes
dataset = model.problem.make_dataset(filename=dataset_path, num_samples=val_size, offset=opts.offset + val_size * i)
device = torch.device("cuda:{}".format(i))

return _eval_dataset(model, dataset, width, softmax_temp, opts, device)


def eval_dataset(dataset_path, width, softmax_temp, opts):
# Even with multiprocessing, we load the model here since it contains the name where to write results
model, _ = load_model(opts.model)
use_cuda = torch.cuda.is_available() and not opts.no_cuda
model.use_cuda = use_cuda
if opts.multiprocessing:
assert use_cuda, "Can only do multiprocessing with cuda"
num_processes = torch.cuda.device_count()
assert opts.val_size % num_processes == 0

with mp.Pool(num_processes) as pool:
results = list(itertools.chain.from_iterable(pool.map(
eval_dataset_mp,
[(dataset_path, width, softmax_temp, opts, i, num_processes) for i in range(num_processes)]
)))

else:
device = torch.device("cuda:0" if use_cuda else "cpu")
dataset = model.problem.make_dataset(filename=dataset_path, num_samples=opts.val_size, offset=opts.offset)
results = _eval_dataset(model, dataset, width, softmax_temp, opts, device)

# This is parallelism, even if we use multiprocessing (we report as if we did not use multiprocessing, e.g. 1 GPU)
parallelism = opts.eval_batch_size

costs, tours, durations = zip(*results) # Not really costs since they should be negative

print("Average cost: {} +- {}".format(np.mean(costs), 2 * np.std(costs) / np.sqrt(len(costs))))
print("Average serial duration: {} +- {}".format(
np.mean(durations), 2 * np.std(durations) / np.sqrt(len(durations))))
print("Average parallel duration: {}".format(np.mean(durations) / parallelism))
print("Calculated total duration: {}".format(timedelta(seconds=int(np.sum(durations) / parallelism))))

dataset_basename, ext = os.path.splitext(os.path.split(dataset_path)[-1])
model_name = "_".join(os.path.normpath(os.path.splitext(opts.model)[0]).split(os.sep)[-2:])
if opts.o is None:
results_dir = os.path.join(opts.results_dir, model.problem.NAME, dataset_basename)
os.makedirs(results_dir, exist_ok=True)

out_file = os.path.join(results_dir, "{}-{}-{}{}-t{}-{}-{}{}".format(
dataset_basename, model_name,
opts.decode_strategy,
width if opts.decode_strategy != 'greedy' else '',
softmax_temp, opts.offset, opts.offset + len(costs), ext
))
else:
out_file = opts.o

assert opts.f or not os.path.isfile(
out_file), "File already exists! Try running with -f option to overwrite."

save_dataset((results, parallelism), out_file)

return costs, tours, durations


def _eval_dataset(model, dataset, width, softmax_temp, opts, device):

model.to(device)
model.eval()

model.set_decode_type(
"greedy" if opts.decode_strategy in ('bs', 'greedy') else "sampling",
temp=softmax_temp)

dataloader = DataLoader(dataset, batch_size=opts.eval_batch_size)

results = []
for batch in tqdm(dataloader, disable=opts.no_progress_bar, ascii=True):
if model.problem.NAME is "tspsl":
batch = move_to(batch["nodes_coord"], device)
else:
batch = move_to(batch, device)

start = time.time()
with torch.no_grad():
if opts.decode_strategy in ('sample', 'greedy'):
if opts.decode_strategy == 'greedy':
assert width == 0, "Do not set width when using greedy"
assert opts.eval_batch_size <= opts.max_calc_batch_size, \
"eval_batch_size should be smaller than calc batch size"
batch_rep = 1
iter_rep = 1
elif width * opts.eval_batch_size > opts.max_calc_batch_size:
assert opts.eval_batch_size == 1
assert width % opts.max_calc_batch_size == 0
batch_rep = opts.max_calc_batch_size
iter_rep = width // opts.max_calc_batch_size
else:
batch_rep = width
iter_rep = 1
assert batch_rep > 0
# This returns (batch_size, iter_rep shape)
sequences, costs = model.sample_many(batch, batch_rep=batch_rep, iter_rep=iter_rep)
batch_size = len(costs)
ids = torch.arange(batch_size, dtype=torch.int64, device=costs.device)
else:
assert opts.decode_strategy == 'bs'

cum_log_p, sequences, costs, ids, batch_size = model.beam_search(
batch, beam_size=width,
compress_mask=opts.compress_mask,
max_calc_batch_size=opts.max_calc_batch_size
)

if sequences is None:
sequences = [None] * batch_size
costs = [math.inf] * batch_size
else:
sequences, costs = get_best(
sequences.cpu().numpy(), costs.cpu().numpy(),
ids.cpu().numpy() if ids is not None else None,
batch_size
)
duration = time.time() - start
for seq, cost in zip(sequences, costs):
if model.problem.NAME in ("tsp", "tspsl"):
seq = seq.tolist() # No need to trim as all are same length
elif model.problem.NAME in ("cvrp", "sdvrp"):
seq = np.trim_zeros(seq).tolist() + [0] # Add depot
elif model.problem.NAME in ("op", "pctsp"):
seq = np.trim_zeros(seq) # We have the convention to exclude the depot
else:
assert False, "Unkown problem: {}".format(model.problem.NAME)
# Note VRP only
results.append((cost, seq, duration))

return results


if __name__ == "__main__":

parser = argparse.ArgumentParser()
parser.add_argument("datasets", nargs='+', help="Filename of the dataset(s) to evaluate")
parser.add_argument("-f", action='store_true', help="Set true to overwrite")
parser.add_argument("-o", default=None, help="Name of the results file to write")
parser.add_argument('--val_size', type=int, default=10000,
help='Number of instances used for reporting validation performance')
parser.add_argument('--offset', type=int, default=0,
help='Offset where to start in dataset (default 0)')
parser.add_argument('--eval_batch_size', type=int, default=1024,
help="Batch size to use during (baseline) evaluation")
parser.add_argument('--width', type=int, nargs='+',
help='Sizes of beam to use for beam search (or number of samples for sampling), '
'0 to disable (default), -1 for infinite')
parser.add_argument('--decode_strategy', type=str,
help='Beam search (bs), Sampling (sample) or Greedy (greedy)')
parser.add_argument('--softmax_temperature', type=parse_softmax_temperature, default=1,
help="Softmax temperature (sampling or bs)")
parser.add_argument('--model', type=str)
parser.add_argument('--no_cuda', action='store_true', help='Disable CUDA')
parser.add_argument('--no_progress_bar', action='store_true', help='Disable progress bar')
parser.add_argument('--compress_mask', action='store_true', help='Compress mask into long')
parser.add_argument('--max_calc_batch_size', type=int, default=10000, help='Size for subbatches')
parser.add_argument('--results_dir', default='results', help="Name of results directory")
parser.add_argument('--multiprocessing', action='store_true',
help='Use multiprocessing to parallelize over multiple GPUs')

opts = parser.parse_args()

assert opts.o is None or (len(opts.datasets) == 1 and len(opts.width) <= 1), \
"Cannot specify result filename with more than one dataset or more than one width"

widths = opts.width if opts.width is not None else [0]

for width in widths:
for dataset_path in opts.datasets:
eval_dataset(dataset_path, width, opts.softmax_temperature, opts)
Loading

0 comments on commit 5e3eb2d

Please sign in to comment.