Skip to content

Commit

Permalink
added references to bootlm help documentation and function reference
Browse files Browse the repository at this point in the history
  • Loading branch information
acp29 committed Sep 2, 2024
1 parent dcf89d1 commit 58aa2c9
Showing 1 changed file with 35 additions and 17 deletions.
52 changes: 35 additions & 17 deletions inst/bootlm.m
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@
% By default, confidence intervals and Null Hypothesis Significance Tests
% (NHSTs) for the regression coefficients (H0 = 0) are calculated by wild
% bootstrap-t and are robust when normality and homoscedasticity cannot be
% assumed.
% assumed [1].
%
% Usage of this function is very similar to that of 'anovan'. Data (Y)
% is a numeric variable, and the predictor(s) are specified in GROUP (a.k.a.
Expand Down Expand Up @@ -115,11 +115,11 @@
%
% o 'wild' (default): Wild bootstrap-t, using the 'bootwild'
% function. Please see the help documentation below and in the
% function 'bootwild' for more information about this method.
% function 'bootwild' for more information about this method [1].
%
% o 'bayesian': Bayesian bootstrap, using the 'bootbayes' function.
% Please see the help documentation below and in the function
% 'bootbayes' for more information about this method.
% 'bootbayes' for more information about this method [2].
%
% Note that p-values are a frequentist concept and are only computed
% and returned from bootlm when the METHOD is 'wild'. Since the wild
Expand All @@ -144,7 +144,7 @@
%
% o 'auto': Sets a value for PRIOR that effectively incorporates
% Bessel's correction a priori such that the variance of the
% posterior (i.e. the rows of BOOTSTAT) becomes an unbiased
% posterior (i.e. of the rows of BOOTSTAT) becomes an unbiased
% estimator of the sampling variance*. The calculation used for
% 'auto' is as follows:
%
Expand All @@ -166,7 +166,7 @@
% to Bayes rule: a uniform (or flat) Dirichlet distribution
% (over all points in its support). Please see the help
% documentation for the function 'bootbayes' for more information
% about the prior.
% about the prior [2].
%
% '[...] = bootlm (Y, GROUP, ..., 'alpha', ALPHA)'
%
Expand All @@ -177,16 +177,16 @@
% o scalar: Set the central mass of the intervals to 100*(1-ALPHA)%.
% For example, 0.05 for a 95% interval. If METHOD is 'wild',
% then the intervals are symmetric bootstrap-t confidence
% intervals. If METHOD is 'bayesian', then the intervals are
% shortest probability credible intervals.
% intervals [1]. If METHOD is 'bayesian', then the intervals
% are shortest probability credible intervals [2].
%
% o vector: A pair of probabilities defining the lower and upper
% and upper bounds of the interval(s) as 100*(ALPHA(1))% and
% 100*(ALPHA(2))% respectively. For example, [.025, .975] for
% a 95% interval. If METHOD is 'wild', then the intervals are
% asymmetric bootstrap-t confidence intervals. If METHOD is
% asymmetric bootstrap-t confidence intervals [1]. If METHOD is
% 'bayesian', then the intervals are simple percentile credible
% intervals.
% intervals [2].
%
% The default value of ALPHA is the scalar: 0.05.
%
Expand Down Expand Up @@ -391,7 +391,7 @@
% - 'CI_lower': The lower bound(s) of the confidence/credible interval(s)
% - 'CI_upper': The upper bound(s) of the confidence/credible interval(s)
% - 'pval': The p-value(s) for the hypothesis that the estimate(s) == 0
% - 'fpr': The minimum false positive risk (FPR) for each p-value
% - 'fpr': The minimum false positive risk (FPR) for each p-value [3].
% - 'N': The number of independent sampling units used to compute CIs
% - 'prior': The prior used for Bayesian bootstrap. This will return a
% scalar for regression coefficients, or a P x 1 or P x 2
Expand Down Expand Up @@ -424,7 +424,7 @@
% - 'MS': Mean-squares
% - 'F': F-Statistic
% - 'PVAL': p-values
% - 'FPR': The minimum false positive risk for each p-value
% - 'FPR': The minimum false positive risk for each p-value [3]
% - 'SSE': Sum-of-Squared Error
% - 'DFE': Degrees of Freedom for Error
% - 'MSE': Mean Squared Error
Expand All @@ -438,8 +438,8 @@
% the method used is 'wild' bootstrap AND when no other statistics are
% requested (i.e. estimated marginal means or posthoc tests). The
% bootstrap is achieved by wild bootstrap of the residuals from the full
% model. Computations of the statistics in AOVSTAT are compatible with
% the 'clustid' and 'blocksz' options.
% model [1,4]. Computations of the statistics in AOVSTAT are compatible
% with the 'clustid' and 'blocksz' options.
%
% The bootlm function treats all model predictors as fixed effects during
% ANOVA tests. While any type of predictor, be it a fixed effect or
Expand All @@ -457,13 +457,13 @@
% sample sizes are equal or not.
%
% '[STATS, BOOTSTAT, AOVSTAT, PRED_ERR] = bootlm (...)' also computes
% refined bootstrap estimates of prediction error* and returns the derived
% statistics in a structure with the following fields:
% refined bootstrap estimates of prediction error* and returns statistics
% derived from it in a structure containing the following fields:
% - 'MODEL': The formula of the linear model(s) in Wilkinson's notation
% - 'PE': Bootstrap estimate of prediction error
% - 'PE': Bootstrap estimate of prediction error [5]
% - 'PRESS': Bootstrap estimate of predicted residual error sum of squares
% - 'RSQ_pred': Bootstrap estimate of predicted R-squared
% - 'EIC': Extended (Efron) Information Criterion
% - 'EIC': Extended (Efron) Information Criterion [6]
% - 'RL': Relative likelihood (compared to the intercept-only model)
% - 'Wt': EIC expressed as weights
%
Expand All @@ -485,6 +485,24 @@
% regression coefficients (b), the hypothesis matrix (L) and the outcome (Y)
% for the linear model.
%
% Bibliography:
% [1] Penn, A.C. statistics-resampling manual: `bootwild` function reference.
% https://gnu-octave.github.io/statistics-resampling/function/bootwild.html
% and references therein. Last accessed 02 Sept 2024.
% [2] Penn, A.C. statistics-resampling manual: `bootbayes` function reference.
% https://gnu-octave.github.io/statistics-resampling/function/bootbayes.html
% and references therein. Last accessed 02 Sept 2024.
% [3] David Colquhoun (2019) The False Positive Risk: A Proposal Concerning
% What to Do About p-Values, The American Statistician, 73:sup1, 192-201
% [4] ter Braak (1992) Permutation versus bootstrap significance test in
% multiple regression and ANOVA. In Jockel et al (Eds.) Bootstrapping
% and Related Techniques. Springer-Verlag, Berlin, pg 79-86
% [5] Efron and Tibshirani (1993) An Introduction to the Bootstrap.
% New York, NY: Chapman & Hall. pg 247-252
% [6] Konishi & Kitagawa (2008), "Bootstrap Information Criterion" In:
% Information Criteria and Statistical Modeling. Springer Series in
% Statistics. Springer, NY.
%
% bootlm (version 2024.07.08)
% Author: Andrew Charles Penn
% https://www.researchgate.net/profile/Andrew_Penn/
Expand Down

0 comments on commit 58aa2c9

Please sign in to comment.