forked from pytorch/torchrec
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
OSS serialization with dataclasses (pytorch#1860)
Summary: Pull Request resolved: pytorch#1860 Support unsharded TorchRec module serialization/deserialization in OSS with JSON serializer for EBC Reviewed By: IvanKobzarev Differential Revision: D55901896 fbshipit-source-id: ea4c685f287941e34efdafac7fea480826609c3c
- Loading branch information
1 parent
e7e7a34
commit d0f7729
Showing
4 changed files
with
351 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
from dataclasses import dataclass | ||
from typing import List, Optional | ||
|
||
from torchrec.modules.embedding_configs import DataType, PoolingType | ||
|
||
|
||
# Same as EmbeddingBagConfig but serializable | ||
@dataclass | ||
class EmbeddingBagConfigMetadata: | ||
num_embeddings: int | ||
embedding_dim: int | ||
name: str | ||
data_type: DataType | ||
feature_names: List[str] | ||
weight_init_max: Optional[float] | ||
weight_init_min: Optional[float] | ||
need_pos: bool | ||
pooling: PoolingType | ||
|
||
|
||
@dataclass | ||
class EBCMetadata: | ||
tables: List[EmbeddingBagConfigMetadata] | ||
is_weighted: bool | ||
device: Optional[str] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
import json | ||
from typing import Dict, Type | ||
|
||
import torch | ||
|
||
from torch import nn | ||
from torchrec.ir.schema import EBCMetadata, EmbeddingBagConfigMetadata | ||
|
||
from torchrec.ir.types import SerializerInterface | ||
from torchrec.modules.embedding_configs import DataType, EmbeddingBagConfig, PoolingType | ||
from torchrec.modules.embedding_modules import EmbeddingBagCollection | ||
|
||
|
||
def embedding_bag_config_to_metadata( | ||
table_config: EmbeddingBagConfig, | ||
) -> EmbeddingBagConfigMetadata: | ||
return EmbeddingBagConfigMetadata( | ||
num_embeddings=table_config.num_embeddings, | ||
embedding_dim=table_config.embedding_dim, | ||
name=table_config.name, | ||
data_type=table_config.data_type.value, | ||
feature_names=table_config.feature_names, | ||
weight_init_max=table_config.weight_init_max, | ||
weight_init_min=table_config.weight_init_min, | ||
need_pos=table_config.need_pos, | ||
pooling=table_config.pooling.value, | ||
) | ||
|
||
|
||
def embedding_metadata_to_config( | ||
table_config: EmbeddingBagConfigMetadata, | ||
) -> EmbeddingBagConfig: | ||
return EmbeddingBagConfig( | ||
num_embeddings=table_config.num_embeddings, | ||
embedding_dim=table_config.embedding_dim, | ||
name=table_config.name, | ||
data_type=DataType(table_config.data_type), | ||
feature_names=table_config.feature_names, | ||
weight_init_max=table_config.weight_init_max, | ||
weight_init_min=table_config.weight_init_min, | ||
need_pos=table_config.need_pos, | ||
pooling=PoolingType(table_config.pooling), | ||
) | ||
|
||
|
||
class EBCJsonSerializer(SerializerInterface): | ||
""" | ||
Serializer for torch.export IR using thrift. | ||
""" | ||
|
||
@classmethod | ||
def serialize( | ||
cls, | ||
module: nn.Module, | ||
) -> torch.Tensor: | ||
if not isinstance(module, EmbeddingBagCollection): | ||
raise ValueError( | ||
f"Expected module to be of type EmbeddingBagCollection, got {type(module)}" | ||
) | ||
|
||
ebc_metadata = EBCMetadata( | ||
tables=[ | ||
embedding_bag_config_to_metadata(table_config) | ||
for table_config in module.embedding_bag_configs() | ||
], | ||
is_weighted=module.is_weighted(), | ||
device=str(module.device), | ||
) | ||
|
||
ebc_metadata_dict = ebc_metadata.__dict__ | ||
ebc_metadata_dict["tables"] = [ | ||
table_config.__dict__ for table_config in ebc_metadata_dict["tables"] | ||
] | ||
|
||
return torch.frombuffer( | ||
json.dumps(ebc_metadata_dict).encode(), dtype=torch.uint8 | ||
) | ||
|
||
@classmethod | ||
def deserialize(cls, input: torch.Tensor, typename: str) -> nn.Module: | ||
if typename != "EmbeddingBagCollection": | ||
raise ValueError( | ||
f"Expected typename to be EmbeddingBagCollection, got {typename}" | ||
) | ||
|
||
raw_bytes = input.numpy().tobytes() | ||
ebc_metadata_dict = json.loads(raw_bytes.decode()) | ||
tables = [ | ||
EmbeddingBagConfigMetadata(**table_config) | ||
for table_config in ebc_metadata_dict["tables"] | ||
] | ||
|
||
return EmbeddingBagCollection( | ||
tables=[ | ||
embedding_metadata_to_config(table_config) for table_config in tables | ||
], | ||
is_weighted=ebc_metadata_dict["is_weighted"], | ||
device=( | ||
torch.device(ebc_metadata_dict["device"]) | ||
if ebc_metadata_dict["device"] | ||
else None | ||
), | ||
) | ||
|
||
|
||
class JsonSerializer(SerializerInterface): | ||
""" | ||
Serializer for torch.export IR using thrift. | ||
""" | ||
|
||
module_to_serializer_cls: Dict[str, Type[SerializerInterface]] = { | ||
"EmbeddingBagCollection": EBCJsonSerializer, | ||
} | ||
|
||
@classmethod | ||
def serialize( | ||
cls, | ||
module: nn.Module, | ||
) -> torch.Tensor: | ||
typename = type(module).__name__ | ||
if typename not in cls.module_to_serializer_cls: | ||
raise ValueError( | ||
f"Expected typename to be one of {list(cls.module_to_serializer_cls.keys())}, got {typename}" | ||
) | ||
|
||
return cls.module_to_serializer_cls[typename].serialize(module) | ||
|
||
@classmethod | ||
def deserialize(cls, input: torch.Tensor, typename: str) -> nn.Module: | ||
if typename not in cls.module_to_serializer_cls: | ||
raise ValueError( | ||
f"Expected typename to be one of {list(cls.module_to_serializer_cls.keys())}, got {typename}" | ||
) | ||
|
||
return cls.module_to_serializer_cls[typename].deserialize(input, typename) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
#!/usr/bin/env python3 | ||
|
||
import unittest | ||
|
||
import torch | ||
from torch import nn | ||
from torchrec.ir.serializer import JsonSerializer | ||
|
||
from torchrec.ir.utils import deserialize_embedding_modules, serialize_embedding_modules | ||
|
||
from torchrec.modules.embedding_configs import EmbeddingBagConfig | ||
from torchrec.modules.embedding_modules import EmbeddingBagCollection | ||
from torchrec.sparse.jagged_tensor import KeyedJaggedTensor, KeyedTensor | ||
|
||
|
||
class TestJsonSerializer(unittest.TestCase): | ||
def generate_model(self) -> nn.Module: | ||
class Model(nn.Module): | ||
def __init__(self, ebc): | ||
super().__init__() | ||
self.sparse_arch = ebc | ||
|
||
def forward( | ||
self, | ||
features: KeyedJaggedTensor, | ||
) -> KeyedTensor: | ||
return self.sparse_arch(features) | ||
|
||
tb1_config = EmbeddingBagConfig( | ||
name="t1", | ||
embedding_dim=3, | ||
num_embeddings=10, | ||
feature_names=["f1"], | ||
) | ||
tb2_config = EmbeddingBagConfig( | ||
name="t2", | ||
embedding_dim=4, | ||
num_embeddings=10, | ||
feature_names=["f2"], | ||
) | ||
|
||
ebc = EmbeddingBagCollection( | ||
tables=[tb1_config, tb2_config], | ||
is_weighted=False, | ||
) | ||
|
||
model = Model(ebc) | ||
|
||
return model | ||
|
||
def test_serialize_deserialize_ebc(self) -> None: | ||
model = self.generate_model() | ||
id_list_features = KeyedJaggedTensor.from_offsets_sync( | ||
keys=["f1", "f2"], | ||
values=torch.tensor([0, 1, 2, 3]), | ||
offsets=torch.tensor([0, 2, 2, 3, 4]), | ||
) | ||
|
||
eager_kt = model(id_list_features) | ||
|
||
# Serialize PEA | ||
model, sparse_fqns = serialize_embedding_modules(model, JsonSerializer) | ||
ep = torch.export.export( | ||
model, | ||
(id_list_features,), | ||
{}, | ||
strict=False, | ||
# Allows KJT to not be unflattened and run a forward on unflattened EP | ||
preserve_module_call_signature=(tuple(sparse_fqns)), | ||
) | ||
|
||
# Run forward on ExportedProgram | ||
ep_output = ep.module()(id_list_features) | ||
|
||
self.assertTrue(isinstance(ep_output, KeyedTensor)) | ||
self.assertEqual(eager_kt.keys(), ep_output.keys()) | ||
self.assertEqual(eager_kt.values().shape, ep_output.values().shape) | ||
|
||
# Deserialize EBC | ||
deserialized_model = deserialize_embedding_modules(ep, JsonSerializer) | ||
|
||
self.assertTrue( | ||
isinstance(deserialized_model.sparse_arch, EmbeddingBagCollection) | ||
) | ||
|
||
for deserialized_config, org_config in zip( | ||
deserialized_model.sparse_arch.embedding_bag_configs(), | ||
model.sparse_arch.embedding_bag_configs(), | ||
): | ||
self.assertEqual(deserialized_config.name, org_config.name) | ||
self.assertEqual( | ||
deserialized_config.embedding_dim, org_config.embedding_dim | ||
) | ||
self.assertEqual( | ||
deserialized_config.num_embeddings, org_config.num_embeddings | ||
) | ||
self.assertEqual( | ||
deserialized_config.feature_names, org_config.feature_names | ||
) | ||
|
||
# Run forward on deserialized model | ||
deserialized_kt = deserialized_model(id_list_features) | ||
|
||
self.assertEqual(eager_kt.keys(), deserialized_kt.keys()) | ||
self.assertEqual(eager_kt.values().shape, deserialized_kt.values().shape) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters