Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feat: And #400

Merged
merged 5 commits into from
Oct 25, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/SUMMARY.md
Original file line number Diff line number Diff line change
Expand Up @@ -88,6 +88,7 @@
* [tensor.sign](framework/operators/tensor/tensor.sign.md)
* [tensor.clip](framework/operators/tensor/tensor.clip.md)
* [tensor.identity](framework/operators/tensor/tensor.identity.md)
* [tensor.and](framework/operators/tensor/tensor.and.md)
* [Neural Network](framework/operators/neural-network/README.md)
* [nn.relu](framework/operators/neural-network/nn.relu.md)
* [nn.leaky\_relu](framework/operators/neural-network/nn.leaky\_relu.md)
Expand Down
115 changes: 58 additions & 57 deletions docs/framework/compatibility.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,62 +4,63 @@ To see the full list of available ONNX Operators refer to [this table](https://g

You can see below the list of current supported ONNX Operators:

| Operator | Implemented |
| :-------------------------------------------------------------: | :------------------: |
| [MatMul](operators/tensor/tensor.matmul.md) | :white\_check\_mark: |
| [MatMulInteger](operators/tensor/tensor.matmul.md) | :white\_check\_mark: |
| [Add](operators/tensor/#arithmetic-operations) | :white\_check\_mark: |
| [Sub](operators/tensor/#arithmetic-operations) | :white\_check\_mark: |
| [Mul](operators/tensor/#arithmetic-operations) | :white\_check\_mark: |
| [Div](operators/tensor/#arithmetic-operations) | :white\_check\_mark: |
| [Equal](operators/tensor/tensor.equal.md) | :white\_check\_mark: |
| [Greater](operators/tensor/tensor.greater.md) | :white\_check\_mark: |
| [GreaterOrEqual](operators/tensor/tensor.greater\_equal.md) | :white\_check\_mark: |
| [Less](operators/tensor/tensor.less.md) | :white\_check\_mark: |
| [LessOrEqual](operators/tensor/tensor.less\_equal.md) | :white\_check\_mark: |
| [Abs](operators/tensor/tensor.abs.md) | :white\_check\_mark: |
| [Neg](operators/tensor/tensor.neg.md) | :white\_check\_mark: |
| [Ceil](operators/tensor/tensor.ceil.md) | :white\_check\_mark: |
| [Exp](operators/tensor/tensor.exp.md) | :white\_check\_mark: |
| [Ln](operators/tensor/tensor.log.md) | :white\_check\_mark: |
| [Reshape](operators/tensor/tensor.reshape.md) | :white\_check\_mark: |
| [Transpose](operators/tensor/tensor.transpose.md) | :white\_check\_mark: |
| [ArgMax](operators/tensor/tensor.argmax.md) | :white\_check\_mark: |
| [ArgMin](operators/tensor/tensor.argmin.md) | :white\_check\_mark: |
| [ReduceSum](operators/tensor/tensor.reduce\_sum.md) | :white\_check\_mark: |
| [CumSum](operators/tensor/tensor.cumsum.md) | :white\_check\_mark: |
| [Cos](operators/tensor/tensor.cos.md) | :white\_check\_mark: |
| [Sin](operators/tensor/tensor.sin.md) | :white\_check\_mark: |
| [Asin](operators/tensor/tensor.asin.md) | :white\_check\_mark: |
| [Flatten](operators/tensor/tensor.flatten.md) | :white\_check\_mark: |
| [Relu](operators/neural-network/nn.relu.md) | :white\_check\_mark: |
| [LeakyRelu](operators/neural-network/nn.leaky\_relu.md) | :white\_check\_mark: |
|[ThresholdedRelu](operators/neural-network/nn.thresholded\_relu.md)| :white\_check\_mark: |
| [Sigmoid](operators/neural-network/nn.sigmoid.md) | :white\_check\_mark: |
| [Softmax](operators/neural-network/nn.softmax.md) | :white\_check\_mark: |
| [LogSoftmax](operators/neural-network/nn.logsoftmax.md) | :white\_check\_mark: |
| [Softsign](operators/neural-network/nn.softsign.md) | :white\_check\_mark: |
| [Softplus](operators/neural-network/nn.softplus.md) | :white\_check\_mark: |
| [Linear](operators/neural-network/nn.linear.md) | :white\_check\_mark: |
| [HardSigmoid](operators/neural-network/nn.hard\_sigmoid.md) | :white\_check\_mark: |
| [Sinh](operators/tensor/tensor.sinh.md) | :white\_check\_mark: |
| [Asinh](operators/tensor/tensor.asinh.md) | :white\_check\_mark: |
| [Cosh](operators/tensor/tensor.cosh.md) | :white\_check\_mark: |
| [ACosh](operators/tensor/tensor.acosh.md) | :white\_check\_mark: |
| [Tanh](operators/tensor/tensor.tanh.md) | :white\_check\_mark: |
| [Acos](operators/tensor/tensor.acos.md) | :white\_check\_mark: |
| [Sqrt](operators/tensor/tensor.sqrt.md) | :white\_check\_mark: |
| [Onehot](operators/tensor/tensor.onehot.md) | :white\_check\_mark: |
| [Slice](operators/tensor/tensor.slice.md) | :white\_check\_mark: |
| [Concat](operators/tensor/tensor.concat.md) | :white\_check\_mark: |
| [Gather](operators/tensor/tensor.gather.md) | :white\_check\_mark: |
| [QuantizeLinear](operators/tensor/tensor.quantize\_linear.md) | :white\_check\_mark: |
| [DequantizeLinear](operators/tensor/tensor.quantize\_linear.md) | :white\_check\_mark: |
| [Nonzero](operators/tensor/tensor.nonzero.md) | :white\_check\_mark: |
| [Squeeze](operators/tensor/tensor.squeeze.md) | :white\_check\_mark: |
| [Unsqueeze](operators/tensor/tensor.unsqueeze.md) | :white\_check\_mark: |
| [Sign](operators/tensor/tensor.sign.md) | :white\_check\_mark: |
| [Clip](operators/tensor/tensor.clip.md) | :white\_check\_mark: |
| [Identity](operators/tensor/tensor.identity.md) | :white\_check\_mark: |
| Operator | Implemented |
| :-----------------------------------------------------------------: | :------------------: |
| [MatMul](operators/tensor/tensor.matmul.md) | :white\_check\_mark: |
| [MatMulInteger](operators/tensor/tensor.matmul.md) | :white\_check\_mark: |
| [Add](operators/tensor/#arithmetic-operations) | :white\_check\_mark: |
| [Sub](operators/tensor/#arithmetic-operations) | :white\_check\_mark: |
| [Mul](operators/tensor/#arithmetic-operations) | :white\_check\_mark: |
| [Div](operators/tensor/#arithmetic-operations) | :white\_check\_mark: |
| [Equal](operators/tensor/tensor.equal.md) | :white\_check\_mark: |
| [Greater](operators/tensor/tensor.greater.md) | :white\_check\_mark: |
| [GreaterOrEqual](operators/tensor/tensor.greater\_equal.md) | :white\_check\_mark: |
| [Less](operators/tensor/tensor.less.md) | :white\_check\_mark: |
| [LessOrEqual](operators/tensor/tensor.less\_equal.md) | :white\_check\_mark: |
| [Abs](operators/tensor/tensor.abs.md) | :white\_check\_mark: |
| [Neg](operators/tensor/tensor.neg.md) | :white\_check\_mark: |
| [Ceil](operators/tensor/tensor.ceil.md) | :white\_check\_mark: |
| [Exp](operators/tensor/tensor.exp.md) | :white\_check\_mark: |
| [Ln](operators/tensor/tensor.log.md) | :white\_check\_mark: |
| [Reshape](operators/tensor/tensor.reshape.md) | :white\_check\_mark: |
| [Transpose](operators/tensor/tensor.transpose.md) | :white\_check\_mark: |
| [ArgMax](operators/tensor/tensor.argmax.md) | :white\_check\_mark: |
| [ArgMin](operators/tensor/tensor.argmin.md) | :white\_check\_mark: |
| [ReduceSum](operators/tensor/tensor.reduce\_sum.md) | :white\_check\_mark: |
| [CumSum](operators/tensor/tensor.cumsum.md) | :white\_check\_mark: |
| [Cos](operators/tensor/tensor.cos.md) | :white\_check\_mark: |
| [Sin](operators/tensor/tensor.sin.md) | :white\_check\_mark: |
| [Asin](operators/tensor/tensor.asin.md) | :white\_check\_mark: |
| [Flatten](operators/tensor/tensor.flatten.md) | :white\_check\_mark: |
| [Relu](operators/neural-network/nn.relu.md) | :white\_check\_mark: |
| [LeakyRelu](operators/neural-network/nn.leaky\_relu.md) | :white\_check\_mark: |
| [ThresholdedRelu](operators/neural-network/nn.thresholded\_relu.md) | :white\_check\_mark: |
| [Sigmoid](operators/neural-network/nn.sigmoid.md) | :white\_check\_mark: |
| [Softmax](operators/neural-network/nn.softmax.md) | :white\_check\_mark: |
| [LogSoftmax](operators/neural-network/nn.logsoftmax.md) | :white\_check\_mark: |
| [Softsign](operators/neural-network/nn.softsign.md) | :white\_check\_mark: |
| [Softplus](operators/neural-network/nn.softplus.md) | :white\_check\_mark: |
| [Linear](operators/neural-network/nn.linear.md) | :white\_check\_mark: |
| [HardSigmoid](operators/neural-network/nn.hard\_sigmoid.md) | :white\_check\_mark: |
| [Sinh](operators/tensor/tensor.sinh.md) | :white\_check\_mark: |
| [Asinh](operators/tensor/tensor.asinh.md) | :white\_check\_mark: |
| [Cosh](operators/tensor/tensor.cosh.md) | :white\_check\_mark: |
| [ACosh](operators/tensor/tensor.acosh.md) | :white\_check\_mark: |
| [Tanh](operators/tensor/tensor.tanh.md) | :white\_check\_mark: |
| [Acos](operators/tensor/tensor.acos.md) | :white\_check\_mark: |
| [Sqrt](operators/tensor/tensor.sqrt.md) | :white\_check\_mark: |
| [Onehot](operators/tensor/tensor.onehot.md) | :white\_check\_mark: |
| [Slice](operators/tensor/tensor.slice.md) | :white\_check\_mark: |
| [Concat](operators/tensor/tensor.concat.md) | :white\_check\_mark: |
| [Gather](operators/tensor/tensor.gather.md) | :white\_check\_mark: |
| [QuantizeLinear](operators/tensor/tensor.quantize\_linear.md) | :white\_check\_mark: |
| [DequantizeLinear](operators/tensor/tensor.quantize\_linear.md) | :white\_check\_mark: |
| [Nonzero](operators/tensor/tensor.nonzero.md) | :white\_check\_mark: |
| [Squeeze](operators/tensor/tensor.squeeze.md) | :white\_check\_mark: |
| [Unsqueeze](operators/tensor/tensor.unsqueeze.md) | :white\_check\_mark: |
| [Sign](operators/tensor/tensor.sign.md) | :white\_check\_mark: |
| [Clip](operators/tensor/tensor.clip.md) | :white\_check\_mark: |
| [Identity](operators/tensor/tensor.identity.md) | :white\_check\_mark: |
| [And](operators/tensor/tensor.and.md) | :white\_check\_mark: |

Current Operators support: **51/156 (33%)**
1 change: 1 addition & 0 deletions docs/framework/operators/tensor/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -83,6 +83,7 @@ use orion::operators::tensor::TensorTrait;
| [`tensor.unsqueeze`](tensor.unsqueeze.md) | Inserts single-dimensional entries to the shape of an input tensor. |
| [`tensor.sign`](tensor.sign.md) | Calculates the sign of the given input tensor element-wise. |
| [`tensor.clip`](tensor.clip.md) | Clip operator limits the given input within an interval. |
| [`tensor.and`](tensor.and.md) | Computes the logical AND of two tensors element-wise. |
| [`tensor.identity`](tensor.identity.md) | Return a Tensor with the same shape and contents as input. |

## Arithmetic Operations
Expand Down
67 changes: 67 additions & 0 deletions docs/framework/operators/tensor/tensor.and.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
#tensor.and

```rust
fn and(self: @Tensor<T>, other: @Tensor<T>) -> Tensor<usize>;
```

Computes the logical AND of two tensors element-wise.
The input tensors must have either:
* Exactly the same shape
* The same number of dimensions and the length of each dimension is either a common length or 1.

## Args

* `self`(`@Tensor<T>`) - The first tensor to be compared
* `other`(`@Tensor<T>`) - The second tensor to be compared

## Panics

* Panics if the shapes are not equal or broadcastable

## Returns

A new `Tensor<usize>` of booleans (0 or 1) with the same shape as the broadcasted inputs.

## Examples

Case 1: Compare tensors with same shape

```rust
use array::{ArrayTrait, SpanTrait};

use orion::operators::tensor::{TensorTrait, Tensor, U32Tensor};

fn and_example() -> Tensor<usize> {
let tensor_1 = TensorTrait::<u32>::new(
shape: array![3, 3].span(), data: array![0, 1, 2, 3, 4, 5, 6, 7, 8].span(),
);

let tensor_2 = TensorTrait::<u32>::new(
shape: array![3, 3].span(), data: array![0, 1, 2, 0, 1, 2, 0, 1, 2].span(),
);

return tensor_1.and(@tensor_2);
}
>>> [0,1,1,0,1,1,0,1,1]
```

Case 2: Compare tensors with different shapes

```rust
use array::{ArrayTrait, SpanTrait};

use orion::operators::tensor::{TensorTrait, Tensor, U32Tensor};

fn and_example() -> Tensor<usize> {
let tensor_1 = TensorTrait::<u32>::new(
shape: array![3, 3].span(), data: array![0, 1, 2, 3, 4, 5, 6, 7, 8].span(),
);

let tensor_2 = TensorTrait::<u32>::new(
shape: array![1, 3].span(), data: array![0, 1, 2].span(),
);

return tensor_1.and(@tensor_2);
}
>>> [0,1,1,0,1,1,0,1,1]
```
168 changes: 168 additions & 0 deletions nodegen/node/and.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,168 @@
import numpy as np
from nodegen.node import RunAll
from ..helpers import make_node, make_test, to_fp, Tensor, Dtype, FixedImpl


class And(RunAll):
@staticmethod
def and_u32():
def default():
x = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
y = np.random.randint(0, 6, (3, 3, 3)).astype(np.uint32)
z = np.logical_and(x, y)

x = Tensor(Dtype.U32, x.shape, x.flatten())
y = Tensor(Dtype.U32, y.shape, y.flatten())
z = Tensor(Dtype.U32, z.shape, z.flatten())

name = "and_u32"
make_node([x, y], [z], name)
make_test([x, y], z, "input_0.and(@input_1)", name)

def broadcast():
x = np.random.randint(0, 6, (2, 2)).astype(np.uint32)
y = np.random.randint(0, 6, (1, 2)).astype(np.uint32)
z = np.logical_and(x, y)

x = Tensor(Dtype.U32, x.shape, x.flatten())
y = Tensor(Dtype.U32, y.shape, y.flatten())
z = Tensor(Dtype.U32, z.shape, z.flatten())

name = "and_u32_broadcast"
make_node([x, y], [z], name)
make_test([x, y], z, "input_0.and(@input_1)", name)

default()
broadcast()

@staticmethod
def and_i32():
def default():
x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32)
z = np.logical_and(x, y)

x = Tensor(Dtype.I32, x.shape, x.flatten())
y = Tensor(Dtype.I32, y.shape, y.flatten())
z = Tensor(Dtype.U32, z.shape, z.flatten())

name = "and_i32"
make_node([x, y], [z], name)
make_test([x, y], z, "input_0.and(@input_1)", name)

def broadcast():
x = np.random.randint(-3, 3, (2, 2)).astype(np.int32)
y = np.random.randint(-3, 3, (1, 2)).astype(np.int32)
z = np.logical_and(x, y)

x = Tensor(Dtype.I32, x.shape, x.flatten())
y = Tensor(Dtype.I32, y.shape, y.flatten())
z = Tensor(Dtype.U32, z.shape, z.flatten())

name = "and_i32_broadcast"
make_node([x, y], [z], name)
make_test([x, y], z, "input_0.and(@input_1)", name)

default()
broadcast()

@staticmethod
def and_i8():
def default():
x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8)
z = np.logical_and(x, y)

x = Tensor(Dtype.I8, x.shape, x.flatten())
y = Tensor(Dtype.I8, y.shape, y.flatten())
z = Tensor(Dtype.U32, z.shape, z.flatten())

name = "and_i8"
make_node([x, y], [z], name)
make_test([x, y], z, "input_0.and(@input_1)", name)

def broadcast():
x = np.random.randint(-3, 3, (2, 2)).astype(np.int8)
y = np.random.randint(-3, 3, (1, 2)).astype(np.int8)
z = np.logical_and(x, y)

x = Tensor(Dtype.I8, x.shape, x.flatten())
y = Tensor(Dtype.I8, y.shape, y.flatten())
z = Tensor(Dtype.U32, z.shape, z.flatten())

name = "and_i8_broadcast"
make_node([x, y], [z], name)
make_test([x, y], z, "input_0.and(@input_1)", name)

default()
broadcast()

@staticmethod
def and_fp8x23():
def default():
x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
z = np.logical_and(x, y)

x = Tensor(Dtype.FP8x23, x.shape, to_fp(
x.flatten(), FixedImpl.FP8x23))
y = Tensor(Dtype.FP8x23, y.shape, to_fp(
y.flatten(), FixedImpl.FP8x23))
z = Tensor(Dtype.U32, z.shape, z.flatten())

name = "and_fp8x23"
make_node([x, y], [z], name)
make_test([x, y], z, "input_0.and(@input_1)", name)

def broadcast():
x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
y = np.random.randint(-3, 3, (1, 2)).astype(np.float64)
z = np.logical_and(x, y)

x = Tensor(Dtype.FP8x23, x.shape, to_fp(
x.flatten(), FixedImpl.FP8x23))
y = Tensor(Dtype.FP8x23, y.shape, to_fp(
y.flatten(), FixedImpl.FP8x23))
z = Tensor(Dtype.U32, z.shape, z.flatten())

name = "and_fp8x23_broadcast"
make_node([x, y], [z], name)
make_test([x, y], z, "input_0.and(@input_1)", name)

default()
broadcast()

@staticmethod
def and_fp16x16():
def default():
x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64)
z = np.logical_and(x, y)

x = Tensor(Dtype.FP16x16, x.shape, to_fp(
x.flatten(), FixedImpl.FP16x16))
y = Tensor(Dtype.FP16x16, y.shape, to_fp(
y.flatten(), FixedImpl.FP16x16))
z = Tensor(Dtype.U32, z.shape, z.flatten())

name = "and_fp16x16"
make_node([x, y], [z], name)
make_test([x, y], z, "input_0.and(@input_1)", name)

def broadcast():
x = np.random.randint(-3, 3, (2, 2)).astype(np.float64)
y = np.random.randint(-3, 3, (1, 2)).astype(np.float64)
z = np.logical_and(x, y)

x = Tensor(Dtype.FP16x16, x.shape, to_fp(
x.flatten(), FixedImpl.FP16x16))
y = Tensor(Dtype.FP16x16, y.shape, to_fp(
y.flatten(), FixedImpl.FP16x16))
z = Tensor(Dtype.U32, z.shape, z.flatten())

name = "and_fp16x16_broadcast"
make_node([x, y], [z], name)
make_test([x, y], z, "input_0.and(@input_1)", name)

default()
broadcast()
Loading