-
Notifications
You must be signed in to change notification settings - Fork 85
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'develop' into all-contributors/add-HappyTomatoo
- Loading branch information
Showing
329 changed files
with
12,328 additions
and
96 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
27 changes: 27 additions & 0 deletions
27
docs/framework/operators/machine-learning/tree-ensemble-classifier/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
# Tree Ensemble Classifier | ||
|
||
`TreeEnsembleClassifierTrait` provides a trait definition for tree ensemble classification problem. | ||
|
||
```rust | ||
use orion::operators::ml::TreeEnsembleClassifierTrait; | ||
``` | ||
|
||
### Data types | ||
|
||
Orion supports currently only fixed point data types for `TreeEnsembleClassifierTrait`. | ||
|
||
| Data type | dtype | | ||
| -------------------- | ------------------------------------------------------------- | | ||
| Fixed point (signed) | `TreeRegressorTrait<FP8x23 \| FP16x16 \| FP64x64 \| FP32x32>` | | ||
|
||
### How to construct `TreeEnsembleClassifier` | ||
|
||
You can utilize [this notebook](https://colab.research.google.com/drive/1qem56rUKJcNongXsLZ16_869q8395prz#scrollTo=V3qGW_kfXudk) to translate parameters from your ONNX TreeEnsembleClassifier model into Cairo code. Efforts are underway to integrate this functionality into Giza-CLI, aiming to enhance the user experience. | ||
|
||
|
||
*** | ||
|
||
| function | description | | ||
| --- | --- | | ||
| [`tree_ensemble_classifier.predict`](tree_ensemble_classifier.predict.md) | Returns the top class for each of N inputs. | | ||
|
199 changes: 199 additions & 0 deletions
199
...s/machine-learning/tree-ensemble-classifier/tree_ensemble_classifier.predict.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
# TreeEnsembleClassifier::predict | ||
|
||
```rust | ||
fn predict(ref self: TreeEnsembleClassifier<T>, X: Tensor<T>) -> (Span<usize>, MutMatrix::<T>); | ||
``` | ||
|
||
Tree Ensemble classifier. Returns the top class for each of N inputs. | ||
|
||
## Args | ||
|
||
* `self`: TreeEnsembleClassifier<T> - A TreeEnsembleClassifier object. | ||
* `X`: Input 2D tensor. | ||
|
||
## Returns | ||
|
||
* N Top class for each point | ||
* The class score Matrix for each class, for each point. | ||
|
||
## Type Constraints | ||
|
||
`TreeEnsembleClassifier` and `X` must be fixed points | ||
|
||
## Examples | ||
|
||
```rust | ||
use orion::numbers::FP16x16; | ||
use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor, U32Tensor}; | ||
use orion::operators::ml::{NODE_MODES, TreeEnsembleAttributes, TreeEnsemble}; | ||
use orion::operators::ml::{ | ||
TreeEnsembleClassifier, POST_TRANSFORM, TreeEnsembleClassifierTrait | ||
}; | ||
use orion::operators::matrix::{MutMatrix, MutMatrixImpl}; | ||
|
||
fn tree_ensemble_classifier_helper( | ||
post_transform: POST_TRANSFORM | ||
) -> (TreeEnsembleClassifier<FP16x16>, Tensor<FP16x16>) { | ||
let class_ids: Span<usize> = array![0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2] | ||
.span(); | ||
|
||
let class_nodeids: Span<usize> = array![2, 2, 2, 3, 3, 3, 4, 4, 4, 1, 1, 1, 3, 3, 3, 4, 4, 4] | ||
.span(); | ||
|
||
let class_treeids: Span<usize> = array![0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1] | ||
.span(); | ||
|
||
let class_weights: Span<FP16x16> = array![ | ||
FP16x16 { mag: 30583, sign: false }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 2185, sign: false }, | ||
FP16x16 { mag: 13107, sign: false }, | ||
FP16x16 { mag: 15729, sign: false }, | ||
FP16x16 { mag: 3932, sign: false }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 32768, sign: false }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 32768, sign: false }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 29491, sign: false }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 3277, sign: false }, | ||
FP16x16 { mag: 6746, sign: false }, | ||
FP16x16 { mag: 12529, sign: false }, | ||
FP16x16 { mag: 13493, sign: false }, | ||
] | ||
.span(); | ||
|
||
let classlabels: Span<usize> = array![0, 1, 2].span(); | ||
|
||
let nodes_falsenodeids: Span<usize> = array![4, 3, 0, 0, 0, 2, 0, 4, 0, 0].span(); | ||
|
||
let nodes_featureids: Span<usize> = array![1, 0, 0, 0, 0, 1, 0, 0, 0, 0].span(); | ||
|
||
let nodes_missing_value_tracks_true: Span<usize> = array![0, 0, 0, 0, 0, 0, 0, 0, 0, 0].span(); | ||
|
||
let nodes_modes: Span<NODE_MODES> = array![ | ||
NODE_MODES::BRANCH_LEQ, | ||
NODE_MODES::BRANCH_LEQ, | ||
NODE_MODES::LEAF, | ||
NODE_MODES::LEAF, | ||
NODE_MODES::LEAF, | ||
NODE_MODES::BRANCH_LEQ, | ||
NODE_MODES::LEAF, | ||
NODE_MODES::BRANCH_LEQ, | ||
NODE_MODES::LEAF, | ||
NODE_MODES::LEAF, | ||
] | ||
.span(); | ||
|
||
let nodes_nodeids: Span<usize> = array![0, 1, 2, 3, 4, 0, 1, 2, 3, 4].span(); | ||
|
||
let nodes_treeids: Span<usize> = array![0, 0, 0, 0, 0, 1, 1, 1, 1, 1].span(); | ||
|
||
let nodes_truenodeids: Span<usize> = array![1, 2, 0, 0, 0, 1, 0, 3, 0, 0].span(); | ||
|
||
let nodes_values: Span<FP16x16> = array![ | ||
FP16x16 { mag: 81892, sign: false }, | ||
FP16x16 { mag: 19992, sign: true }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 110300, sign: true }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 44245, sign: true }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 0, sign: false }, | ||
] | ||
.span(); | ||
|
||
let tree_ids: Span<usize> = array![0, 1].span(); | ||
|
||
let mut root_index: Felt252Dict<usize> = Default::default(); | ||
root_index.insert(0, 0); | ||
root_index.insert(1, 5); | ||
|
||
let mut node_index: Felt252Dict<usize> = Default::default(); | ||
node_index | ||
.insert(2089986280348253421170679821480865132823066470938446095505822317253594081284, 0); | ||
node_index | ||
.insert(2001140082530619239661729809084578298299223810202097622761632384561112390979, 1); | ||
node_index | ||
.insert(2592670241084192212354027440049085852792506518781954896144296316131790403900, 2); | ||
node_index | ||
.insert(2960591271376829378356567803618548672034867345123727178628869426548453833420, 3); | ||
node_index | ||
.insert(458933264452572171106695256465341160654132084710250671055261382009315664425, 4); | ||
node_index | ||
.insert(1089549915800264549621536909767699778745926517555586332772759280702396009108, 5); | ||
node_index | ||
.insert(1321142004022994845681377299801403567378503530250467610343381590909832171180, 6); | ||
node_index | ||
.insert(2592987851775965742543459319508348457290966253241455514226127639100457844774, 7); | ||
node_index | ||
.insert(2492755623019086109032247218615964389726368532160653497039005814484393419348, 8); | ||
node_index | ||
.insert(1323616023845704258113538348000047149470450086307731200728039607710316625916, 9); | ||
|
||
let atts = TreeEnsembleAttributes { | ||
nodes_falsenodeids, | ||
nodes_featureids, | ||
nodes_missing_value_tracks_true, | ||
nodes_modes, | ||
nodes_nodeids, | ||
nodes_treeids, | ||
nodes_truenodeids, | ||
nodes_values | ||
}; | ||
|
||
let mut ensemble: TreeEnsemble<FP16x16> = TreeEnsemble { | ||
atts, tree_ids, root_index, node_index | ||
}; | ||
|
||
let base_values: Option<Span<FP16x16>> = Option::None; | ||
|
||
let mut classifier: TreeEnsembleClassifier<FP16x16> = TreeEnsembleClassifier { | ||
ensemble, | ||
class_ids, | ||
class_nodeids, | ||
class_treeids, | ||
class_weights, | ||
classlabels, | ||
base_values, | ||
post_transform | ||
}; | ||
|
||
let mut X: Tensor<FP16x16> = TensorTrait::new( | ||
array![3, 3].span(), | ||
array![ | ||
FP16x16 { mag: 65536, sign: true }, | ||
FP16x16 { mag: 52429, sign: true }, | ||
FP16x16 { mag: 39322, sign: true }, | ||
FP16x16 { mag: 26214, sign: true }, | ||
FP16x16 { mag: 13107, sign: true }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 13107, sign: false }, | ||
FP16x16 { mag: 26214, sign: false }, | ||
FP16x16 { mag: 39322, sign: false }, | ||
] | ||
.span() | ||
); | ||
|
||
(classifier, X) | ||
} | ||
|
||
fn test_tree_ensemble_classifier_multi_pt_softmax() -> (Span<usize>, MutMatrix::<FP16x16>) { | ||
let (mut classifier, X) = tree_ensemble_classifier_helper(POST_TRANSFORM::SOFTMAX); | ||
|
||
let (labels, scores) = TreeEnsembleClassifierTrait::predict(ref classifier, X); | ||
(labels, scores) | ||
} | ||
|
||
>>> | ||
([0, 0, 1], | ||
[ | ||
[0.545123, 0.217967, 0.23691], | ||
[0.416047, 0.284965, 0.298988], | ||
[0.322535, 0.366664, 0.310801], | ||
]) | ||
``` |
Oops, something went wrong.