Skip to content

georgiagracetully/RibonanzaNet_EternaBench_Eval

Repository files navigation

RibonanzaNet_EternaBench_Eval

Finetuning and evaluating RibonanzaNet on EternaBench Datasets

RibonanzaNet: (1) He, S.; Huang, R.; Townley, J.; Kretsch, R. C.; Karagianes, T. G.; Cox, D. B. T.; Blair, H.; Penzar, D.; Vyaltsev, V.; Aristova, E.; Zinkevich, A.; Bakulin, A.; Sohn, H.; Krstevski, D.; Fukui, T.; Tatematsu, F.; Uchida, Y.; Jang, D.; Lee, J. S.; Shieh, R.; Ma, T.; Martynov, E.; Shugaev, M. V.; Bukhari, H. S. T.; Fujikawa, K.; Onodera, K.; Henkel, C.; Ron, S.; Romano, J.; Nicol, J. J.; Nye, G. P.; Wu, Y.; Choe, C.; Reade, W.; Eterna participants; Das, R. Ribonanza: Deep Learning of RNA Structure through Dual Crowdsourcing. bioRxivorg 2024. https://doi.org/10.1101/2024.02.24.581671.

EternaBench: (2) Wayment-Steele, H. K.; Kladwang, W.; Strom, A. I.; Lee, J.; Treuille, A.; Becka, A.; Participants, E.; Das, R. RNA Secondary Structure Packages Evaluated and Improved by High-Throughput Experiments. Nat. Methods 2022, 19 (10), 1234–1242. https://doi.org/10.1038/s41592-022-01605-0.

Three different benchmark datasets were evaluated:

  • Secondary Structure
  • Chemical Mapping
  • Riboswitch Binding Equilibrium Constants

Step by step instructions on how I used .json files generated from provided colab notebooks to evaluate RibonanzaNet (a deep learning model implemented in Pytorch) on eternabench datasets, and compare with other packages:

  • Step 1: Run predictions in google colab notebooks located in SS-evaluation, CM-evaluation, and RS-evaluation
  • Step 2: Create a .json file with formatting identical to calculations from other datasets in EternaBench archived git repository (embedded in colab notebooks used for Step 1)
  • Step 3: Clone EternaBench git repository, update files located in scoringscripts, compilingscripts, and generateplots that have been patched for recent package updates.
  • Step 3: Run scoringscripts from EternaBench github repository to get bootstrapped statistical results.
  • Step 4: Run compilingscripts from EternaBench github repository to evaluate model against other secondary structure prediction algorithms.
  • Step 5: Use generateplots jupyter notebooks in analysis folder from EternaBench github repository to generate heatmaps that display the results.

About

Finetuning and evaluating RibonanzaNet on EternaBench Datasets

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published