-
Notifications
You must be signed in to change notification settings - Fork 35
Fixed Point Math Library for Verilog
License
freecores/verilog_fixed_point_math_library
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Verilog Fixed point math library Original work by Sam Skalicky, originally found here: http://opencores.org/project,fixed_point_arithmetic_parameterized Extended, updated, and heavily commented by Tom Burke ([email protected]) This library includes the basic math functions for the Verilog Language, for implementation on FPGAs. All units have been simulated and synthesized for Xilinx Spartan 3E devices using the Xilinx ISE WebPack tools v14.7 These math routines use a signed magnitude Q,N format, where N is the total number of bits used, and Q is the number of fractional bits used. For instance, 15,32 would represent a 32-bit number with 15 fractional bits, 16 integer bits, and 1 sign bit as shown below: |1|<- N-Q-1 bits ->|<--- Q bits -->| |S|IIIIIIIIIIIIIIII|FFFFFFFFFFFFFFF| This library contains the following modules: qadd.v - Addition module; adds 2 numbers of any sign. qdiv.v - Division module; divides two numbers using a right-shift and subtract algorithm - requires an input clock qmult.v - Multiplication module; purely combinational for systems that will support it qmults.v - Multiplication module; uses a left-shift and add algorithm - requires an input clock (for systems that cannot support the synthesis of a combinational multiplier) Test_add.v - Test fixture for the qadd.v module Test_mult.v - Test fixture for the qmult.v module TestDiv.v - Test fixture for the qdiv.v module TestMultS.v - Test fixture for the qmults.v module These math routines default to a (Q,N) of (15,32), but are easily customizable to your application by changing their input parameters. For instance, an unmodified use of (15,32) would look something like this: qadd my_adder( .a(addend_a), .b(addend_b), .c(result) ); To change this to an (8,23) notation, for instance, the same module would be instantiated thusly: qadd #(8,23) my_adder( .a(addend_a), .b(addend_b), .c(result) ); ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The following is a description of each module ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ qadd.v - A simple combinational addition module. sum = addend + addend Input format: |1|<- N-Q-1 bits ->|<--- Q bits -->| |S|IIIIIIIIIIIIIIII|FFFFFFFFFFFFFFF| Inputs: a - addend 1 b - addend 2 Output format: |1|<- N-Q-1 bits ->|<--- Q bits -->| |S|IIIIIIIIIIIIIIII|FFFFFFFFFFFFFFF| Output: c - result NOTE: There is no error detection for an overflow. It is up to the designer to ensure that an overflow cannot occur!! Example usage: qadd #(Q,N) my_adder( .a(addend_a), .b(addend_b), .c(result) ); For subtraction, set the sign bit for the negative number. (subtraction is the addition of a negative, right?) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ qmult.v - A simple combinational multiplication module. Input format: |1|<- N-Q-1 bits ->|<--- Q bits -->| |S|IIIIIIIIIIIIIIII|FFFFFFFFFFFFFFF| Inputs: i_multiplicand - multiplicand i_multiplier - multiplier Output format: |1|<- N-Q-1 bits ->|<--- Q bits -->| |S|IIIIIIIIIIIIIIII|FFFFFFFFFFFFFFF| Output: o_result - result ovr - overflow flag NOTE: This module assumes a system that supports the synthesis of combinational multipliers. If your device/synthesizer does not support this for your particular application, then use the "qmults.v" module. NOTE: Notice that the output format is identical to the input format! To properly use this module, you need to either ensure that you maximum result never exceeds the format, or incorporate the overflow flag into your design Example usage: qmult #(Q,N) my_multiplier( .i_multiplicand(multiplicand), .i_multiplier(multiplier), .o_result(result), .ovr(overflow_flag) ); ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ qmults.v - A multi-clock multiplication module that uses a left-shift and add algorithm. result = multiplicand x multiplier Input format: |1|<- N-Q-1 bits ->|<--- Q bits -->| |S|IIIIIIIIIIIIIIII|FFFFFFFFFFFFFFF| Inputs: i_multiplicand - multiplicand i_multiplier - multiplier i_start - Start flag; set this bit high ("1") to start the operation when the last operation is completed. This bit is ignored until o_complete is asserted. i_clk - input clock; internal workings occur on the rising edge Output format: |1|<- N-Q-1 bits ->|<--- Q bits -->| |S|IIIIIIIIIIIIIIII|FFFFFFFFFFFFFFF| Output: o_result_out - result o_complete - computation complete flag; asserted ("1") when the operation is completed o_overflow - overflow flag; asserted ("1") to indicate that an overflow has occurred. NOTE: This module is "time deterministic ." - that is, it should always take the same number of clock cycles to complete an operation, regardless of the inputs (N+1 clocks) NOTE: Notice that the output format is identical to the input format! To properly use this module, you need to either ensure that you maximum result never exceeds the format, or incorporate the overflow flag into your design Example usage: qmults #(Q,N) my_multiplier( .i_multiplicand(multiplicand), .i_multiplier(multiplier), .i_start(start), .i_clk(clock), .o_result(result), .o_complete(done), .o_overflow(overflow_flag) ); The qmults.v module begins computation when the start conditions are met: o_complete == 1'b1; i_start == 1'b1; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ qdiv.v - A multi-clock division module that uses a right-shift and add algorithm. quotient = dividend / divisor Input format: |1|<- N-Q-1 bits ->|<--- Q bits -->| |S|IIIIIIIIIIIIIIII|FFFFFFFFFFFFFFF| Inputs: i_dividend - dividend i_divisor - divisor i_start - Start flag; set this bit high ("1") to start the operation when the last operation is completed. This bit is ignored until o_complete is asserted. i_clk - input clock; internal workings occur on the rising edge Output format: |1|<- N-Q-1 bits ->|<--- Q bits -->| |S|IIIIIIIIIIIIIIII|FFFFFFFFFFFFFFF| Output: o_quotient_out - result o_complete - computation complete flag; asserted ("1") when the operation is completed o_overflow - overflow flag; asserted ("1") to indicate that an overflow has occurred. NOTE: This module is "time deterministic ." - that is, it should always take the same number of clock cycles to complete an operation, regardless of the inputs (N+Q+1 clocks) NOTE: Notice that the output format is identical to the input format! To properly use this module, you need to either ensure that you maximum result never exceeds the format, or incorporate the overflow flag into your design Example usage: qdiv #(Q,N) my_divider( .i_dividend(dividend), .i_divisor(divisor), .i_start(start), .i_clk(clock), .o_quotient_out(result), .o_complete(done), .o_overflow(overflow_flag) ); The qdiv.v module begins computation when the start conditions are met: o_complete == 1'b1; i_start == 1'b1; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Suggestions, Kudos, or Complaints? Feel free to contact me - but remember, this stuff is free!
About
Fixed Point Math Library for Verilog
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published