Skip to content

Causal Discovery for Python. Translation and extension of the Tetrad Java code.

License

Notifications You must be signed in to change notification settings

fengxie009/causal-learn

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

causal-learn: Causal Discovery for Python

Causal-learn is a python package for causal discovery that implements both classical and state-of-the-art causal discovery algorithms, which is a Python translation and extension of Tetrad.

The package is actively being developed. Feedbacks (issues, suggestions, etc.) are highly encouraged.

Package Overview

Our causal-learn implements methods for causal discovery:

  • Constraint-based causal discovery methods.
  • Score-based causal discovery methods.
  • Causal discovery methods based on constrained functional causal models.
  • Hidden causal representation learning.
  • Permutation-based causal discovery methods.
  • Granger causality.
  • Multiple utilities for building your own method, such as independence tests, score functions, graph operations, and evaluations.

Install

Causal-learn needs the following packages to be installed beforehand:

  • python 3
  • numpy
  • networkx
  • pandas
  • scipy
  • scikit-learn
  • statsmodels
  • pydot

(For visualization)

  • matplotlib
  • graphviz

To use causal-learn, we could install it using pip:

pip install causal-learn

Documentation

Please kindly refer to causal-learn Doc for detailed tutorials and usages.

Running examples

For search methods in causal discovery, there are various running examples in the ‘tests’ directory, such as TestPC.py and TestGES.py.

For the implemented modules, such as (conditional) independent test methods, we provide unit tests for the convenience of developing your own methods.

Benchmarks

For the convenience of our community, CMU-CLeaR group maintains a list of benchmark datasets including real-world scenarios and various learning tasks. Please refer to the following links:

Please feel free to let us know if you have any recommendation regarding causal datasets with high-quality. We are grateful for any effort that benefits the development of causality community.

Contribution

Please feel free to open an issue if you find anything unexpected. And please create pull requests, perhaps after passing unittests in 'tests/', if you would like to contribute to causal-learn. We are always targeting to make our community better!

About

Causal Discovery for Python. Translation and extension of the Tetrad Java code.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.4%
  • Jupyter Notebook 1.6%