ISTDECO is a simple tool for deconvolving combinatorial image data generated by *FISH techniques into series of non-combinatorial images. This repository contains the implementation of ISTDECO and collection of notebooks demonstarting the tool.
- The notebook
synthetic_example.ipynb
contains examples on simulated data. - The notebook
merfish_example.ipynb
contains examples on MERFISH data. The data can be downloaded using Starfish python library [1]. - The notebook
iss_exampl.ipynb
contains examples on ISS images from [2]. The data can be downloaded from [3].
The source code have been developed and tested on a Linux machine running Ubuntu 16.04 OS with 16GB RAM, Intel® Core™ i7-8850H CPU @ 2.60GHz × 12, Nvidia Quadro P4200/PCIe/SSE2 GPU.
The following python packages are required for ISTDECO
torch
numpy
The notebooks require the additional packages:
pandas
pillow
scipy
matplotlib
starfish
tqdm
To install we recommend using Anaconda enviroments. For instance:
conda create -n myenv python=3.6
conda activate myenv
pip install starfish[napari] torch pandas pillow scipy matplotlib tqdm
[1] starfish: scalable pipelines for image-based transcriptomics https://github.com/spacetx/starfish
[2] Qian, Xiaoyan, et al. "Probabilistic cell typing enables fine mapping of closely related cell types in situ." Nature methods 17.1 (2020): 101-106.
[3] Axel Andersson, Ferran Diego, Fred A. Hamprecht, & Carolina Wählby. (2021). In Situ Sequencing data used in "ISTDECO: In Situ Transcriptomics Decoding by Deconvolution" [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4560687