Skip to content

A tool to train multifactor-course2vec model using softmax loss

Notifications You must be signed in to change notification settings

fabulosa/multifactor2vec

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 

Repository files navigation

multifactor2vec

This tool is to train multifactor course2vec model using basic softmax loss. You can also just train course2vec.

SYNOPSIS python representation_presenter.py [options]

OPTIONS

INPUT AND OUTPUT:

-i inputfile_name

  sampled training data pairs(target word, context word) matrix

-o outputfile_name

  saved model

-c coursefile

  course dictionary

-f factorfile

  factor dictionary (e.g., major, instructor)

-t validation loss file

  record validation loss after each epoch

PARAMETERS

-e epoch

  number of training epochs, default 10

-d vector dimension

  default 300

-m whether train on batch or mini-batch

  0: train on batch, 1: useing mini-batch

-b batch size if train on mini-batch

  default 4096

-l learning rate

  default 1e-3

-v whether using validation set to calculate validation loss

  0: False, 1: True

-s train pure course2vec model or multifactor2vec model

  0: course2vec, 1: multifactor2vec

About

A tool to train multifactor-course2vec model using softmax loss

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages