Skip to content

Commit

Permalink
Sync docs and metadata
Browse files Browse the repository at this point in the history
  • Loading branch information
IsaacG committed Jan 1, 2025
1 parent e7bcda5 commit bac9e33
Show file tree
Hide file tree
Showing 3 changed files with 31 additions and 29 deletions.
28 changes: 1 addition & 27 deletions exercises/practice/collatz-conjecture/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,29 +1,3 @@
# Instructions

The Collatz Conjecture or 3x+1 problem can be summarized as follows:

Take any positive integer n.
If n is even, divide n by 2 to get n / 2.
If n is odd, multiply n by 3 and add 1 to get 3n + 1.
Repeat the process indefinitely.
The conjecture states that no matter which number you start with, you will always reach 1 eventually.

Given a number n, return the number of steps required to reach 1.

## Examples

Starting with n = 12, the steps would be as follows:

0. 12
1. 6
2. 3
3. 10
4. 5
5. 16
6. 8
7. 4
8. 2
9. 1

Resulting in 9 steps.
So for input n = 12, the return value would be 9.
Given a positive integer, return the number of steps it takes to reach 1 according to the rules of the Collatz Conjecture.
28 changes: 28 additions & 0 deletions exercises/practice/collatz-conjecture/.docs/introduction.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# Introduction

One evening, you stumbled upon an old notebook filled with cryptic scribbles, as though someone had been obsessively chasing an idea.
On one page, a single question stood out: **Can every number find its way to 1?**
It was tied to something called the **Collatz Conjecture**, a puzzle that has baffled thinkers for decades.

The rules were deceptively simple.
Pick any positive integer.

- If it's even, divide it by 2.
- If it's odd, multiply it by 3 and add 1.

Then, repeat these steps with the result, continuing indefinitely.

Curious, you picked number 12 to test and began the journey:

12 ➜ 6 ➜ 3 ➜ 10 ➜ 5 ➜ 16 ➜ 8 ➜ 4 ➜ 2 ➜ 1

Counting from the second number (6), it took 9 steps to reach 1, and each time the rules repeated, the number kept changing.
At first, the sequence seemed unpredictable — jumping up, down, and all over.
Yet, the conjecture claims that no matter the starting number, we'll always end at 1.

It was fascinating, but also puzzling.
Why does this always seem to work?
Could there be a number where the process breaks down, looping forever or escaping into infinity?
The notebook suggested solving this could reveal something profound — and with it, fame, [fortune][collatz-prize], and a place in history awaits whoever could unlock its secrets.

[collatz-prize]: https://mathprize.net/posts/collatz-conjecture/
4 changes: 2 additions & 2 deletions exercises/practice/collatz-conjecture/.meta/config.json
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,6 @@
]
},
"blurb": "Calculate the number of steps to reach 1 using the Collatz conjecture.",
"source": "An unsolved problem in mathematics named after mathematician Lothar Collatz",
"source_url": "https://en.wikipedia.org/wiki/3x_%2B_1_problem"
"source": "Wikipedia",
"source_url": "https://en.wikipedia.org/wiki/Collatz_conjecture"
}

0 comments on commit bac9e33

Please sign in to comment.