This repository hosts code for performing deep-learning based segmentation in the Washington University Center for Cellular Imaging.
This new repository is prepared for WU RIS HPC.
- By Michael Chien-Cheng Shih, PhD, Staff Scientist
- email: [email protected]
- Date: July 14, 2020
- GitHub Repository: https://github.com/WUCCI-WashU
- Deep Learning
01_img_prep_t2_demo.ipynb
: data preprocessing02_train_model_t2_nucleus_demo.ipynb
: model training02_train_model_t2_nucleus_demo_smUnet.ipynb
: moodel training with segmentation_models (https://github.com/qubvel/segmentation_models)03_prediction_demo.ipynb
: segmentation predictiondata_inference_*.ipynb
: export statisticsskeleton_study.ipynb
: complied data from skeleton/branching analysis
- Segmentation has been done in two way:
- WUCCI-DL
- Ariadne (https://ariadne.ai/)
- Convolutional Neural Network
- U-Net
-
Data: Generated from Zeiss Crossbeam 540 FIB-SEM
- 3D dataset
- Voxel-size: 10 * 10 * 10 nm3
-
Sample: Human hepatic cells
-
Labels region:
- cell Membrane
- nucleus
- nucleolus
- lipid droplets
-
Sample
- Day 0
data_d00_batch01_loc01 (TH-4891-0dayDOX-B-M3)
data_d00_batch02_loc02 (TH-4891 0day DOX D-K8)
data_d00_batch02_loc03 (TH-4891 0day DOX D A12)
- Day 7
data_d07_batch01_loc01 (TH-4891-7dayDOX)
data_d07_batch02_loc01 (TH-4891 7day DOX B-L8)
data_d07_batch02_loc02 (TH-4891 7day DOX C-R19)
- Day 14
data_d14_batch01_loc01 (TH-4891-14dayDOX-C-H16)
- Day 17
data_d17_batch01_loc01 (TH-4891-17dayDOX)
- Day 21
data_d21_batch01_loc01 (TH-4891-21dayDOX)
- Day 0
- Data Location: Workstation-008
- Export Directory:
D:\PerlmutterData\
raw_input_image
: original imagesongoing
: Amira projects for manual segmentationlogs
: model and record for deep learning trainingdl_seg_project_raw
data_Amira
: the training label iamges and raw imagesdata_crop
: small image patches create for training fromdata_Amira
pred_img
: the results of prediction
Archive
: the archived folders
- Data Location: Workstation-008
- Export Directory:
D:\PerlmutterData\segmentation_compiled_export
-
Amira_3D
: Raw Segementation files and Amira .hx files- Raw files
raw_img
: raw image files; pixel size 10 nm^3cell_membrane
: segmentation of area inside cell membrane (WUCCI-DL)nucleus
: segmentation of nucleus (WUCCI-DL)nucleolus
: segmentation of nucleolus (Amira)lipid_droplet
: segmentation of lipid droplets (WUCCI-DL)mito
: segmentation of mitochondria (Ariadne)cristae
: segmentation of cristae inside mitochondria (Ariadne)ER
: segmentation of endoplasmic reticulum (Ariadne)inclusion
: segmentation of globulus inclusion (Ariadne)
- Amira .hx file and folders
data_d**_batch**_loc**_inclusion
: label analysis on ER and inclusiondata_d**_batch**_loc**_mito
: label analysis on mito and cristaedata_d**_batch**_loc**_skeleton
: skeleton (branching) analysis on mitochondira
.hxtemplate
: template files used for analysis
- Raw files
-
data
: dataraw
: raw analysis exported from Amira- label analysis
cell_membrane
nucleus
mito
cristae
ER
inclusion
- skeleton/branching analysis
skeleton
: .xml files; includes node, points and segmentsskeleton_ouput
: .csv files; includes node, points, segments and segments_s
compile
: complied data in single spreadsheet- label analysis:
Volume3d
,Area3d
,BaryCenterX
,BaryCenterY
,BaryCenterZ
,index
,filename
,day
- skeleton/branching analysis:
nodes.csv
:Node ID
,X Coord
,Y Coord
,Z Coord
,Coordination Number
,filename
,day
points.csv
:Point ID
,thickness
,X Coord
,Y Coord
,Z Coord
,filename
,day
segments_s
:Segment ID
,Node ID #1
,Node ID #2
,Point IDs
,length
,thickness
,filename
,day
- please visit Amira User's Guid for more information.
- label analysis:
- label analysis
-
input
: all segmentation images prepare for one label image -
output_2
: merged label images -
output_AND
: label images inside cytoplasm -
surface
: exported surface files in .stl -
video
: 3D animation generated from Blender -
documents
data_foldername - filename_with_label.csv
: coded filemame and origonal filname.
-
This work is licensed under a Creative Commons Attribution 4.0 International License.