Skip to content

duplicate from dl_fibem_seg; for WU culster and local workstation

Notifications You must be signed in to change notification settings

eufmike/fibsem_seg_dl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DL Segmentation on FIB-SEM Datasets

This repository hosts code for performing deep-learning based segmentation in the Washington University Center for Cellular Imaging.

This new repository is prepared for WU RIS HPC.

Information

Functions

  • Deep Learning
    1. 01_img_prep_t2_demo.ipynb: data preprocessing
    2. 02_train_model_t2_nucleus_demo.ipynb: model training
    3. 02_train_model_t2_nucleus_demo_smUnet.ipynb: moodel training with segmentation_models (https://github.com/qubvel/segmentation_models)
    4. 03_prediction_demo.ipynb: segmentation prediction
    5. data_inference_*.ipynb: export statistics
    6. skeleton_study.ipynb: complied data from skeleton/branching analysis

DL Segmentation

Methods

  • Convolutional Neural Network
  • U-Net

Datasets

  • Data: Generated from Zeiss Crossbeam 540 FIB-SEM

    • 3D dataset
    • Voxel-size: 10 * 10 * 10 nm3
  • Sample: Human hepatic cells

  • Labels region:

    • cell Membrane
    • nucleus
    • nucleolus
    • lipid droplets
  • Sample

    1. Day 0
      • data_d00_batch01_loc01 (TH-4891-0dayDOX-B-M3)
      • data_d00_batch02_loc02 (TH-4891 0day DOX D-K8)
      • data_d00_batch02_loc03 (TH-4891 0day DOX D A12)
    2. Day 7
      • data_d07_batch01_loc01 (TH-4891-7dayDOX)
      • data_d07_batch02_loc01 (TH-4891 7day DOX B-L8)
      • data_d07_batch02_loc02 (TH-4891 7day DOX C-R19)
    3. Day 14
      • data_d14_batch01_loc01 (TH-4891-14dayDOX-C-H16)
    4. Day 17
      • data_d17_batch01_loc01 (TH-4891-17dayDOX)
    5. Day 21
      • data_d21_batch01_loc01 (TH-4891-21dayDOX)

Directory for Deep Learning

  • Data Location: Workstation-008
  • Export Directory: D:\PerlmutterData\
    1. raw_input_image: original images
    2. ongoing: Amira projects for manual segmentation
    3. logs: model and record for deep learning training
    4. dl_seg_project_raw
      • data_Amira: the training label iamges and raw images
      • data_crop: small image patches create for training from data_Amira
      • pred_img: the results of prediction
    5. Archive: the archived folders

Directory for Data Export

  • Data Location: Workstation-008
  • Export Directory: D:\PerlmutterData\segmentation_compiled_export
    1. Amira_3D: Raw Segementation files and Amira .hx files

      • Raw files
        • raw_img: raw image files; pixel size 10 nm^3
        • cell_membrane: segmentation of area inside cell membrane (WUCCI-DL)
        • nucleus: segmentation of nucleus (WUCCI-DL)
        • nucleolus: segmentation of nucleolus (Amira)
        • lipid_droplet: segmentation of lipid droplets (WUCCI-DL)
        • mito: segmentation of mitochondria (Ariadne)
        • cristae: segmentation of cristae inside mitochondria (Ariadne)
        • ER: segmentation of endoplasmic reticulum (Ariadne)
        • inclusion: segmentation of globulus inclusion (Ariadne)
      • Amira .hx file and folders
        • data_d**_batch**_loc**_inclusion: label analysis on ER and inclusion
        • data_d**_batch**_loc**_mito: label analysis on mito and cristae
        • data_d**_batch**_loc**_skeleton: skeleton (branching) analysis on mitochondira
      • .hxtemplate: template files used for analysis
    2. data: data

      • raw: raw analysis exported from Amira
        • label analysis
          • cell_membrane
          • nucleus
          • mito
          • cristae
          • ER
          • inclusion
        • skeleton/branching analysis
          • skeleton: .xml files; includes node, points and segments
          • skeleton_ouput: .csv files; includes node, points, segments and segments_s
        • compile: complied data in single spreadsheet
          • label analysis: Volume3d, Area3d, BaryCenterX, BaryCenterY, BaryCenterZ, index, filename, day
          • skeleton/branching analysis:
            • nodes.csv: Node ID, X Coord, Y Coord, Z Coord, Coordination Number, filename, day
            • points.csv: Point ID, thickness, X Coord, Y Coord, Z Coord, filename, day
            • segments_s: Segment ID, Node ID #1, Node ID #2, Point IDs, length, thickness, filename, day
            • please visit Amira User's Guid for more information.
    3. input: all segmentation images prepare for one label image

    4. output_2: merged label images

    5. output_AND: label images inside cytoplasm

    6. surface: exported surface files in .stl

    7. video: 3D animation generated from Blender

    8. documents

      • data_foldername - filename_with_label.csv: coded filemame and origonal filname.

License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

About

duplicate from dl_fibem_seg; for WU culster and local workstation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages