Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MeanEncoderTransform generates wrong values #492

Merged
merged 14 commits into from
Nov 6, 2024
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
-
-
-
-
- Fix working with NaN target in `MeanEncoderTransform` ([#492](https://github.com/etna-team/etna/pull/492))
-
-
-
Expand Down
15 changes: 9 additions & 6 deletions etna/transforms/encoders/mean_encoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -214,13 +214,13 @@ def _transform(self, df: pd.DataFrame) -> pd.DataFrame:
# first timestamp is NaN
expanding_mean = y.expanding().mean().shift()
# cumcount not including current timestamp
cumcount = y.groupby(segment_df[self.in_column].astype(str)).agg("cumcount")
cumcount = segment_df.loc[y.notna()].groupby(self.in_column, dropna=False).cumcount().reindex(y.index).replace(0, np.NaN)
# cumsum not including current timestamp
cumsum = (
y.groupby(segment_df[self.in_column].astype(str))
.transform(lambda x: x.shift().cumsum())
.fillna(0)
cumsum = segment_df['target'].groupby(segment_df[self.in_column].astype(str), dropna=False).transform(
lambda x: x.shift().fillna(0).cumsum()
)
cumsum = cumsum.where(cumcount.notna(), np.NaN)

feature = (cumsum + expanding_mean * self.smoothing) / (cumcount + self.smoothing)
if self.handle_missing is MissingMode.global_mean:
nan_feature_index = segment_df[segment_df[self.in_column].isnull()].index
Expand All @@ -237,7 +237,7 @@ def _transform(self, df: pd.DataFrame) -> pd.DataFrame:
timestamps = intersected_df.index
categories = pd.unique(df.loc[:, self.idx[:, self.in_column]].values.ravel())

cumstats = pd.DataFrame(data={"sum": 0, "count": 0, self.in_column: categories})
cumstats = pd.DataFrame(data={"sum": np.NaN, "count": np.NaN, self.in_column: categories})
cur_timestamp_idx = np.arange(0, len(timestamps) * n_segments, len(timestamps))
for _ in range(len(timestamps)):
timestamp_df = flatten.loc[cur_timestamp_idx]
Expand All @@ -254,8 +254,11 @@ def _transform(self, df: pd.DataFrame) -> pd.DataFrame:
.agg(["count", "sum"])
.reset_index()
)
stats = stats.replace({"count": 0, "sum": 0}, np.NaN)

# sum current and previous statistics
cumstats = pd.concat([cumstats, stats]).groupby(self.in_column, as_index=False, dropna=False).sum()
cumstats = cumstats.replace({"count": 0, "sum": 0}, np.NaN)
cur_timestamp_idx += 1

feature = (temp["cumsum"] + running_mean * self.smoothing) / (temp["cumcount"] + self.smoothing)
Expand Down
53 changes: 47 additions & 6 deletions tests/test_transforms/test_encoders/test_mean_encoder_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,11 +27,36 @@ def category_ts() -> TSDataset:
return ts


@pytest.fixture
def mean_segment_encoder_ts() -> TSDataset:
df = generate_ar_df(n_segments=1, start_time="2001-01-01", periods=5)
df["target"] = [0, 1, np.NaN, 3, 4]

df_exog = generate_ar_df(n_segments=1, start_time="2001-01-01", periods=10)
df_exog.rename(columns={"target": "segment_feature"}, inplace=True)
df_exog["segment_feature"] = "segment_0"

ts = TSDataset(df=df, df_exog=df_exog, freq="D", known_future="all")

return ts


@pytest.fixture
def expected_mean_segment_encoder_ts() -> TSDataset:
df = generate_ar_df(n_segments=1, start_time="2001-01-01", periods=5)
df.rename(columns={"target": "segment_mean"}, inplace=True)
df["segment_mean"] = [np.NaN, 0, 0.5, 0.5, 1.33]

ts = TSDataset(df=df, freq="D")

return ts


@pytest.fixture
def expected_micro_category_ts() -> TSDataset:
df = generate_ar_df(start_time="2001-01-01", periods=6, n_segments=2)
df.rename(columns={"target": "mean_encoded_regressor"}, inplace=True)
df["mean_encoded_regressor"] = [np.NaN, 1, 1.5, 1.5, 2.75, 2.25] + [np.NaN, 6.0, 6.25, 7, 7.625, 8.0]
df["mean_encoded_regressor"] = [np.NaN, np.NaN, np.NaN, 1.5, 2.75, 2.25] + [np.NaN, np.NaN, 6.25, 7, 7.625, np.NaN]

ts = TSDataset(df, freq="D")
return ts
Expand All @@ -41,7 +66,7 @@ def expected_micro_category_ts() -> TSDataset:
def expected_micro_global_mean_ts() -> TSDataset:
df = generate_ar_df(start_time="2001-01-01", periods=6, n_segments=2)
df.rename(columns={"target": "mean_encoded_regressor"}, inplace=True)
df["mean_encoded_regressor"] = [np.NaN, 1, 1.5, 1.5, 2.5, 2.25] + [np.NaN, 6.0, 6.25, 7, 7.625, 8.0]
df["mean_encoded_regressor"] = [np.NaN, np.NaN, 1.5, 1.5, 2.5, 2.25] + [np.NaN, np.NaN, 6.25, 7, 7.625, 8.0]

ts = TSDataset(df, freq="D")
return ts
Expand All @@ -61,7 +86,7 @@ def expected_micro_category_make_future_ts() -> TSDataset:
def expected_macro_category_ts() -> TSDataset:
df = generate_ar_df(start_time="2001-01-01", periods=6, n_segments=2)
df.rename(columns={"target": "mean_encoded_regressor"}, inplace=True)
df["mean_encoded_regressor"] = [np.NaN, 3.5, 4, 4.875, 4, 4.85] + [np.NaN, 3.5, 3.66, 4.875, 5.5, 4.275]
df["mean_encoded_regressor"] = [np.NaN, np.NaN, np.NaN, 4.875, 4, 4.851] + [np.NaN, np.NaN, 3.66, 4.875, 5.5, 4.27]

ts = TSDataset(df, freq="D")
return ts
Expand All @@ -71,7 +96,7 @@ def expected_macro_category_ts() -> TSDataset:
def expected_macro_global_mean_ts() -> TSDataset:
df = generate_ar_df(start_time="2001-01-01", periods=6, n_segments=2)
df.rename(columns={"target": "mean_encoded_regressor"}, inplace=True)
df["mean_encoded_regressor"] = [np.NaN, 3.5, 4, 4.875, 5, 4.85] + [np.NaN, 3.5, 3.66, 4.875, 5.5, 5.55]
df["mean_encoded_regressor"] = [np.NaN, np.NaN, 4, 4.875, 5, 4.85] + [np.NaN, np.NaN, 3.66, 4.875, 5.5, 5.55]

ts = TSDataset(df, freq="D")
return ts
Expand Down Expand Up @@ -104,7 +129,7 @@ def ts_begin_nan() -> TSDataset:
def expected_ts_begin_nan_smooth_1() -> TSDataset:
df = generate_ar_df(start_time="2001-01-01", periods=6, n_segments=1)
df.rename(columns={"target": "mean_encoded_regressor"}, inplace=True)
df["mean_encoded_regressor"] = [np.NaN, np.NaN, 0.5, 1.16, 1.5, 2.5]
df["mean_encoded_regressor"] = [np.NaN, np.NaN, np.NaN, 1.75, 1.5, 2.5]

ts = TSDataset(df, freq="D")
return ts
Expand All @@ -114,7 +139,7 @@ def expected_ts_begin_nan_smooth_1() -> TSDataset:
def expected_ts_begin_nan_smooth_2() -> TSDataset:
df = generate_ar_df(start_time="2001-01-01", periods=6, n_segments=1)
df.rename(columns={"target": "mean_encoded_regressor"}, inplace=True)
df["mean_encoded_regressor"] = [np.NaN, np.NaN, 2 / 3, 5 / 4, 5 / 3, 2.5]
df["mean_encoded_regressor"] = [np.NaN, np.NaN, np.NaN, 5 / 3, 5 / 3, 2.5]

ts = TSDataset(df, freq="D")
return ts
Expand Down Expand Up @@ -311,6 +336,22 @@ def test_ts_begin_nan_smooth_2(ts_begin_nan, expected_ts_begin_nan_smooth_2):
)


def test_mean_segment_encoder(mean_segment_encoder_ts, expected_mean_segment_encoder_ts):
mean_encoder = MeanEncoderTransform(
in_column="segment_feature",
mode="per-segment",
handle_missing="category",
smoothing=0,
out_column="segment_mean",
)
mean_encoder.fit_transform(mean_segment_encoder_ts)
assert_frame_equal(
mean_segment_encoder_ts.df.loc[:, pd.IndexSlice[:, "segment_mean"]],
expected_mean_segment_encoder_ts.df,
atol=0.01,
)


def test_save_load(category_ts):
mean_encoder = MeanEncoderTransform(in_column="regressor", out_column="mean_encoded_regressor")
assert_transformation_equals_loaded_original(transform=mean_encoder, ts=category_ts)
Expand Down
Loading