Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add a full config with all possible entries #273

Merged
merged 3 commits into from
Dec 30, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
222 changes: 222 additions & 0 deletions config_full.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,222 @@
## Synthetic population pipeline for Île-de-France
## based on the synpp package

# This is the path to a directory where the pipeline can store temporary data
working_directory: cache

# This section defines which parts of the pipeline should be run
run:
- synthesis.output # To create the output population in the output_path (see below)
#- matsim.output # Uncomment, if you want to run the full simulation (you'll need Java for that)

# Here the configuraiton of the pipeline starts
config:

##############################
# Some general configuration #
##############################

## Number of CPUs to use
processes: 4

################
# Random seeds #
################

## global random seed for the output population
random_seed: 1234

## bpe specific random seed when impute missing coordinates for known IRIS
# bpe_random_seed: 0

##################################################
# Define sampling rate for the output population #
##################################################

sampling_rate: 0.001

#################################
# household travel survey (HTS) #
#################################

## Define whether to use ENTD or EGT as the HTS
hts: entd # entd, egt, edgt_lyon, edgt_44

## Whether to filter people going outside of the area and other filters
# filter_hts: true

## if selected, chose the source for edgt_lyon
# edgt_lyon_source: unchosen # unchosen, adisp, cerema

##################
# Zone selection #
##################

## select regions by region_id
# regions: [11]

## select departments by department_id
# departments: []

#######################
# Output paths #
#######################

## output folder
output_path: output

## output prefix, appended to file names
# output_prefix: ile_de_france_

## file formats that should be exported
# output_formats: ["csv", "gpkg"] # ["csv", "gpkg", "parquet", "geoparquet"]

##############################
# Algorithms configurations #
##############################

## Use the bhepop2 package for attributing income
# income_assignation_method: bhepop2 # uniform, bhepop2

## Activate if you want to run mode choice, will assign a mode to output trips
mode_choice: true

## Statistical matching configuration

## Minimum number of observation to sample from
# matching_minimum_observations: 20

## list of attributes to use for matching
# matching_attributes: ["sex", "any_cars", "age_class", "socioprofessional_class", "departement_id"]

## Use INSEE's urban type in statistical matching
# use_urban_type: true
# urban_type_path: urban_type/UU2020_au_01-01-2023.zip
# matching_attributes: ["urban_type", "*default*"]

## Exclude entreprise without any employee (trancheEffectifsEtablissement is NA, "NN" or "00")
# exclude_no_employee: true

## source for the education locations
# education_location_source: bpe # bpe, addresses

## max iterations for the secondary location selection algorithm
# secloc_maximum_iterations: np.inf

## Buffer arround buildings to capture adresses in their vicinity
# home_address_buffer: 5.0

## How sample homes, using weights or not
# home_location_weight: housing # "uniform", "housing"

# home_location_source: addresses # "addresses", "buildings", "tiles"

## When running matsim

## performing one run of the matsim simulation or not
# run_matsim: true

## creating the far or not
# write_jar: true

############################
# Analysis configuration #
############################

## Whether to use previously generated files or not
# analysis_from_file: false

## prefix of the files to compare to
# comparison_file_prefix: other_

##########################
# Tools configuration #
##########################

## Mostly interesting if you run the simulation, or you activate the `mode_choice` option,

## Binaries paths
# git_binary: git
# osmosis_binary: osmosis
# java_binary: java
# maven_binary: mvn

## Binaries parameters
# java_memory: 14G
# maven_skip_tests: false

## eqasim-java parameters
# eqasim_version: 1.5.0
# eqasim_branch: develop
# eqasim_commit: ece4932
# eqasim_repository: https://github.com/eqasim-org/eqasim-java.git
# eqasim_path: ""

## pt2matsim parameters
# pt2matsim_version: 22.3
# pt2matsim_branch: v22.3

## Strategy to use in pt2matsim gtfs processing
# gtfs_date: dayWithMostServices

## Export the detailed geometry of the network before simplification in pt2matsim
# export_detailed_network: true

#################
# Input paths #
#################

## Absolute root path of all input data
data_path: /path/to/my/data

# census_path: rp_2019/RP2019_INDCVI_csv.zip
# census_csv: FD_INDCVI_2019.csv

# ban_path: ban_idf

# bdtopo_path: bdtopo_idf

# bpe_path: bpe_2021/bpe21_ensemble_xy_csv.zip
# bpe_csv: bpe21_ensemble_xy.csv

# gtfs_path: gtfs_idf

# income_com_path: filosofi_2019/indic-struct-distrib-revenu-2019-COMMUNES.zip
# income_com_xlsx: FILO2019_DISP_COM.xlsx
# income_reg_path: filosofi_2019/indic-struct-distrib-revenu-2019-SUPRA.zip
# income_reg_xlsx: FILO2019_DISP_REG.xlsx
# income_year: 19

# tiles_path: tiles_2019/Filosofi2019_carreaux_200m_gpkg.zip
# tiles_file: carreaux_200m_met.gpkg

# od_pro_path: rp_2019/RP2019_MOBPRO_csv.zip
# od_sco_path: rp_2019/RP2019_MOBSCO_csv.zip
# od_pro_csv: FD_MOBPRO_2019.csv
# od_sco_csv: FD_MOBSCO_2019.csv

## external education locations file
# education_file: education/education_addresses.geojson

# osm_path: osm_idf
# osm_highways: "*"
# osm_railways: "*"

# siren_path: sirene/StockUniteLegale_utf8.zip
# siret_path: sirene/StockEtablissement_utf8.zip
# siret_geo_path: sirene/GeolocalisationEtablissement_Sirene_pour_etudes_statistiques_utf8.zip

# iris_path: iris_2021

# population_path: rp_2019/base-ic-evol-struct-pop-2019.zip
# population_xlsx: base-ic-evol-struct-pop-2019.xlsx
# population_year: 19

## population projections
# projection_path: projection_2021
# projection_scenario: 00_central
# projection_year: 2030

# vehicles_method: default # fleet_sample, default
# vehicles_path: vehicles
# vehicles_year: 2021
Loading