-
Notifications
You must be signed in to change notification settings - Fork 73
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat : add new analysis output (#266)
* feat : first analysis output tables * feat: add proportion & improvement outputs * fix : vehicle analysis & output folder * fix : coments & changelog * fix: correction with egt * fix: separate analysis from data output & update docs --------- Co-authored-by: Marie Laurent <[email protected]>
- Loading branch information
1 parent
2d3d9c1
commit d7453f4
Showing
5 changed files
with
151 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
|
||
import os | ||
import numpy as np | ||
import pandas as pd | ||
import geopandas as gpd | ||
from analysis.marginals import NUMBER_OF_VEHICLES_LABELS | ||
from shapely import distance | ||
AGE_CLASS = [0, 10, 14, 17, 25, 50, 65, np.inf] | ||
NUMBER_OF_VEHICLES= [0,1,2,3,np.inf] | ||
NAME_AGE_CLASS = ["0-10","11-14","15-17","18-25","26-50","51-65","65+"] | ||
ANALYSIS_FOLDER = "analysis_population" | ||
def configure(context): | ||
|
||
context.config("output_path") | ||
context.config("output_prefix", "ile_de_france_") | ||
context.config("sampling_rate") | ||
|
||
context.stage("synthesis.population.trips") | ||
context.stage("synthesis.population.enriched") | ||
context.stage("synthesis.population.spatial.locations") | ||
|
||
context.stage("data.census.filtered", alias = "census") | ||
context.stage("data.hts.selected", alias = "hts") | ||
|
||
def execute(context): | ||
|
||
# check output folder existence | ||
analysis_output_path = os.path.join(context.config("output_path"), ANALYSIS_FOLDER) | ||
if not os.path.exists(analysis_output_path): | ||
os.mkdir(analysis_output_path) | ||
|
||
prefix = context.config("output_prefix") | ||
sampling_rate = context.config("sampling_rate") | ||
df_person_eq = context.stage("synthesis.population.enriched") | ||
df_trip_eq = context.stage("synthesis.population.trips") | ||
df_location_eq = context.stage("synthesis.population.spatial.locations")[["person_id", "activity_index", "geometry"]] | ||
|
||
df_location_eq = df_location_eq.to_crs("EPSG:2154") | ||
df_trip_eq["preceding_activity_index"] = df_trip_eq["trip_index"] | ||
df_trip_eq["following_activity_index"] = df_trip_eq["trip_index"] + 1 | ||
|
||
df_census = context.stage("census") | ||
df_hts_households, df_hts_person, df_hts_trip = context.stage("hts") | ||
df_hts_person["person_weight"] *=df_census["weight"].sum()/df_hts_person["person_weight"].sum() | ||
df_hts_households["household_weight"] *=df_census["weight"].sum()/df_hts_households["household_weight"].sum() | ||
# get age class | ||
df_person_eq["age_class"] = pd.cut(df_person_eq["age"],AGE_CLASS,include_lowest=True,labels=NAME_AGE_CLASS) | ||
df_census["age_class"] = pd.cut(df_census["age"],AGE_CLASS,include_lowest=True,labels=NAME_AGE_CLASS) | ||
df_hts_person["age_class"] = pd.cut(df_hts_person["age"],AGE_CLASS,include_lowest=True,labels=NAME_AGE_CLASS) | ||
|
||
# get vehicule class | ||
df_person_eq["vehicles_class"] = pd.cut(df_person_eq["number_of_vehicles"],NUMBER_OF_VEHICLES,right=True,labels=NUMBER_OF_VEHICLES_LABELS) | ||
df_hts_households["vehicles_class"] = pd.cut(df_hts_households["number_of_vehicles"],NUMBER_OF_VEHICLES,right=True,labels=NUMBER_OF_VEHICLES_LABELS) | ||
|
||
|
||
df_eq_travel = pd.merge(df_trip_eq,df_person_eq[["person_id","age_class"]],on=["person_id"]) | ||
df_hts_travel = pd.merge(df_hts_trip,df_hts_person[["person_id","age_class","person_weight"]],on=["person_id"]) | ||
|
||
print("Generate tables ...") | ||
# Age purpose analysis | ||
analysis_age_purpose = pd.pivot_table(df_eq_travel,"person_id",index="age_class",columns="following_purpose",aggfunc="count") | ||
analysis_age_purpose = analysis_age_purpose/sampling_rate | ||
analysis_age_purpose.to_csv(f"{analysis_output_path}/{prefix}age_purpose.csv") | ||
|
||
# Compare age volume | ||
analysis_age_class = pd.concat([df_census.groupby("age_class")["weight"].sum(),df_person_eq.groupby("age_class")["person_id"].count()],axis=1).reset_index() | ||
analysis_age_class.columns = ["Age class","INSEE","EQASIM"] | ||
analysis_age_class["Proportion_INSEE"] = analysis_age_class["INSEE"] /df_census["weight"].sum() | ||
analysis_age_class["Proportion_EQASIM"] = analysis_age_class["EQASIM"] /len(df_person_eq) | ||
analysis_age_class["EQASIM"] = analysis_age_class["EQASIM"]/sampling_rate | ||
analysis_age_class.to_csv(f"{analysis_output_path}/{prefix}age.csv") | ||
|
||
# Compare vehicle volume | ||
analysis_vehicles_class = pd.concat([df_hts_households.groupby("vehicles_class")["household_weight"].sum(),df_person_eq.groupby("vehicles_class")["household_id"].nunique()],axis=1).reset_index() | ||
analysis_vehicles_class.columns = ["Number of vehicles class","HTS","EQASIM"] | ||
analysis_vehicles_class["Proportion_HTS"] = analysis_vehicles_class["HTS"] / df_hts_households["household_weight"].sum() | ||
analysis_vehicles_class["Proportion_EQASIM"] = analysis_vehicles_class["EQASIM"] / df_person_eq["household_id"].nunique() | ||
analysis_vehicles_class.to_csv(f"{analysis_output_path}/{prefix}nbr_vehicle.csv") | ||
|
||
# Compare license volume | ||
analysis_license_class = pd.concat([df_hts_person.groupby("has_license")["person_weight"].sum(),df_person_eq.groupby("has_license")["person_id"].count()],axis=1).reset_index() | ||
analysis_license_class.columns = ["Possession of license","HTS","EQASIM"] | ||
analysis_license_class["Proportion_HTS"] = analysis_license_class["HTS"] /df_hts_person["person_weight"].sum() | ||
analysis_license_class["Proportion_EQASIM"] = analysis_license_class["EQASIM"] /len(df_person_eq) | ||
analysis_license_class["EQASIM"] = analysis_license_class["EQASIM"]/sampling_rate | ||
analysis_license_class.to_csv(f"{analysis_output_path}/{prefix}license.csv") | ||
|
||
# Compare travel volume | ||
analysis_travel = pd.concat([df_hts_travel.groupby("age_class")["person_weight"].sum(),df_eq_travel.groupby("age_class")["person_id"].count()],axis=1).reset_index() | ||
analysis_travel.columns = ["Age class","HTS","EQASIM"] | ||
analysis_travel["Proportion_HTS"] = analysis_travel["HTS"] /df_hts_travel["person_weight"].sum() | ||
analysis_travel["Proportion_EQASIM"] = analysis_travel["EQASIM"] /len(df_eq_travel) | ||
analysis_travel["EQASIM"] = analysis_travel["EQASIM"]/sampling_rate | ||
analysis_travel.to_csv(f"{analysis_output_path}/{prefix}travel.csv") | ||
|
||
# Compare distance | ||
df_hts_travel["routed_distance"] = df_hts_travel["routed_distance"]/1000 if "routed_distance" in df_hts_travel.columns else df_hts_travel["euclidean_distance"]/1000 | ||
df_hts_travel["distance_class"] = pd.cut(df_hts_travel["routed_distance"],list(np.arange(100))+[np.inf]) | ||
|
||
df_spatial = pd.merge(df_trip_eq, df_location_eq.rename(columns = { | ||
"activity_index": "preceding_activity_index", | ||
"geometry": "preceding_geometry" | ||
}), how = "left", on = ["person_id", "preceding_activity_index"]) | ||
|
||
df_spatial = pd.merge(df_spatial, df_location_eq.rename(columns = { | ||
"activity_index": "following_activity_index", | ||
"geometry": "following_geometry" | ||
}), how = "left", on = ["person_id", "following_activity_index"]) | ||
df_spatial["distance"] = df_spatial.apply(lambda x:distance( x["preceding_geometry"],x["following_geometry"])/1000,axis=1) | ||
df_spatial["distance_class"] = pd.cut(df_spatial["distance"],list(np.arange(100))+[np.inf]) | ||
|
||
analysis_distance = pd.concat([df_hts_travel.groupby("distance_class")["person_weight"].sum(),df_spatial.groupby("distance_class")["person_id"].count()],axis=1).reset_index() | ||
analysis_distance.columns = ["Distance class","HTS","EQASIM"] | ||
analysis_distance["Proportion_HTS"] = analysis_distance["HTS"] / analysis_distance["HTS"].sum() | ||
analysis_distance["Proportion_EQASIM"] = analysis_distance["EQASIM"] / len(df_spatial) | ||
analysis_distance["EQASIM"] = analysis_distance["EQASIM"]/ sampling_rate | ||
analysis_distance.to_csv(f"{analysis_output_path}/{prefix}distance.csv") | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters