Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

adding posterior quantile #19

Merged
merged 1 commit into from
Nov 25, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 25 additions & 6 deletions schierarchy/logistic/_logistic_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -389,9 +389,18 @@ def export_posterior(
self.adata = self._validate_anndata(adata)
# self.adata = adata

# generate samples from posterior distributions for all parameters
# and compute mean, 5%/95% quantiles and standard deviation
self.samples = self.sample_posterior(**sample_kwargs)
if use_quantiles:
add_to_varm = [i for i in add_to_varm if (i not in ["means", "stds"]) and ("q" in i)]
if len(add_to_varm) == 0:
raise ValueError("No quantiles to export - please add add_to_obsm=['q05', 'q50', 'q95'].")
self.samples = dict()
for i in add_to_varm:
q = float(f"0.{i[1:]}")
self.samples[f"post_sample_{i}"] = self.posterior_quantile(q=q, **sample_kwargs)
else:
# generate samples from posterior distributions for all parameters
# and compute mean, 5%/95% quantiles and standard deviation
self.samples = self.sample_posterior(**sample_kwargs)

# revert adata object substitution
self.adata = adata_train
Expand All @@ -403,9 +412,18 @@ def export_posterior(
)
obs_names = adata.obs_names
else:
# generate samples from posterior distributions for all parameters
# and compute mean, 5%/95% quantiles and standard deviation
self.samples = self.sample_posterior(**sample_kwargs)
if use_quantiles:
add_to_varm = [i for i in add_to_varm if (i not in ["means", "stds"]) and ("q" in i)]
if len(add_to_varm) == 0:
raise ValueError("No quantiles to export - please add add_to_obsm=['q05', 'q50', 'q95'].")
self.samples = dict()
for i in add_to_varm:
q = float(f"0.{i[1:]}")
self.samples[f"post_sample_{i}"] = self.posterior_quantile(q=q, **sample_kwargs)
else:
# generate samples from posterior distributions for all parameters
# and compute mean, 5%/95% quantiles and standard deviation
self.samples = self.sample_posterior(**sample_kwargs)
obs_names = self.adata.obs_names

# export posterior distribution summary for all parameters and
Expand All @@ -423,6 +441,7 @@ def export_posterior(
].values()
)[i]
)
print(f"level {i}", categories)
for k in add_to_varm:
sample_df = pd.DataFrame(
self.samples[f"post_sample_{k}"].get(f"weight_level_{i}", None),
Expand Down