-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
dc913d2
commit aef14dc
Showing
17 changed files
with
133 additions
and
245 deletions.
There are no files selected for viewing
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,121 +1,138 @@ | ||
import tensorflow as tf | ||
from tensorflow import keras | ||
from tensorflow.keras import layers | ||
import keras | ||
|
||
import gym | ||
from matplotlib import pyplot as plt | ||
from config import infos | ||
import pickle | ||
from collections import deque | ||
import numpy as np | ||
import random | ||
from tqdm import tqdm | ||
import copy | ||
import sys | ||
import argparse | ||
|
||
|
||
env = gym.envs.make("CartPole-v1") | ||
state_size = env.observation_space.shape[0] | ||
action_size = env.action_space.n | ||
output_dir = "./weights" | ||
memory = deque(maxlen=2000) | ||
|
||
class DQNAgent: | ||
|
||
def __init__(self, state_size, action_size): | ||
self.state_size = state_size | ||
self.action_size = action_size | ||
self.memory = deque(maxlen=infos.len_memory) | ||
self.epsilon = infos.epsilon | ||
self.m1 = self.kreate_model() | ||
#self.m2 = self.kreate_model() | ||
#self.m2.set_weights(self.m1.get_weights()) | ||
|
||
|
||
def kreate_model(self): | ||
learning_rate = infos.learning_rate | ||
model = keras.Sequential() | ||
model.add(keras.layers.Dense(8, input_shape=[self.state_size], activation='relu')) | ||
model.add(keras.layers.Dense(16, activation='relu')) | ||
model.add(keras.layers.Dense(32, activation='relu')) | ||
model.add(keras.layers.Dense(64, activation='relu')) | ||
model.add(keras.layers.Dense(self.action_size, activation='linear')) | ||
model.compile(loss='mse', optimizer=tf.keras.optimizers.Adam(lr=learning_rate)) | ||
return model | ||
def init_model(state_size, action_size): | ||
learning_rate = infos.learning_rate | ||
model = keras.Sequential() | ||
model.add(keras.layers.Dense(8, input_shape=[state_size], activation='relu')) | ||
model.add(keras.layers.Dense(16, activation='relu')) | ||
model.add(keras.layers.Dense(32, activation='relu')) | ||
# model.add(keras.layers.Dense(64, activation='relu')) | ||
model.add(keras.layers.Dense(action_size, activation='linear')) | ||
model.compile(loss='mse', optimizer=tf.keras.optimizers.Adam(lr=learning_rate)) | ||
return model | ||
|
||
def acting(self, state): | ||
if (random.random() < self.epsilon): | ||
return random.randrange(self.action_size) | ||
action = np.argmax(self.m1.predict(state)[0]) ### change to m2 | ||
return (action) | ||
|
||
def fitting(self, state, action, reward, new_state, target_qvalues): | ||
target = reward + (infos.discount_factor * max(self.m1.predict(new_state)[0])) ### change to m2 | ||
target_qvalues[0][action] = target | ||
self.m1.fit(state, target_qvalues, verbose = 0) | ||
|
||
def evaluate(self): | ||
results = [] | ||
for episode in range(infos.eval_size): | ||
state = env.reset() | ||
state = np.reshape(state, [1, state_size]) | ||
steps = 0 | ||
done = False | ||
|
||
while not done and steps < infos.replay_memory: | ||
predicted_qvalues = self.m1.predict(state) | ||
action = np.argmax(predicted_qvalues[0]) | ||
state, _, done, _ = env.step(action) | ||
state = np.reshape(state, [1, state_size]) | ||
steps += 1 | ||
results.append(steps) | ||
return np.mean(results) | ||
|
||
def update_epsilon(self): | ||
if self.epsilon > infos.epislon_min: | ||
self.epsilon = self.epsilon * infos.epsilon_decay | ||
if (self.epsilon <= infos.epislon_min): | ||
self.epsilon = infos.epislon_min | ||
def policy(state, predicted_qvalues, epsilon): | ||
if (random.random() < epsilon): | ||
action = random.randint(0, 1) | ||
else: | ||
action = np.argmax(predicted_qvalues) | ||
return (action) | ||
|
||
def load(name, model): | ||
model.load_weights(name) | ||
model.load_weights(name) | ||
def save(name, model): | ||
model.save_weights(name) | ||
model.save_weights(name) | ||
|
||
def fit_model(state, action, reward, new_state, m1, m2, target_qvalues): | ||
target = reward + (infos.discount_factor * max(m2.predict(new_state)[0])) | ||
target_qvalues[0][action] = target | ||
m1.fit(state, target_qvalues, verbose = 0) | ||
return m1, m2 | ||
|
||
def copy_model(model): | ||
model_copy = keras.models.clone_model(model) | ||
model_copy.build((None, action_size)) | ||
model.compile(loss='mse', optimizer=tf.keras.optimizers.Adam(lr=infos.learning_rate)) | ||
model_copy.set_weights(model.get_weights()) | ||
return (model_copy) | ||
|
||
def eval(m1): | ||
results = [] | ||
for episode in range(3): | ||
state = env.reset() | ||
state = np.reshape(state, [1, state_size]) | ||
steps = 0 | ||
done = False | ||
|
||
while not done and steps < 200: | ||
predicted_qvalues = m1.predict(state) | ||
action = np.argmax(predicted_qvalues[0]) | ||
state, _, done, _ = env.step(action) | ||
state = np.reshape(state, [1, state_size]) | ||
steps += 1 | ||
results.append(steps) | ||
return np.mean(results) | ||
|
||
def play(m1): | ||
while True: | ||
state = env.reset() | ||
state = np.reshape(state, [1, state_size]) | ||
done = False | ||
while not done: | ||
action = np.argmax(m1.predict(state)[0]) # action = random.randint(0, 1) | ||
new_state, reward, done, _ = env.step(action) | ||
env.render() | ||
state = new_state | ||
env.close() | ||
|
||
|
||
def learn(): | ||
agent = DQNAgent(state_size, action_size) | ||
for episode in tqdm(range(infos.episodes)): | ||
state = env.reset() | ||
state = np.reshape(state, [1, state_size]) | ||
steps = 0 | ||
done = False | ||
|
||
while not done: | ||
predicted_qvalues = agent.m1.predict(state) ### change to m2 | ||
action = agent.acting(state) | ||
new_state, reward, done, _ = env.step(action) | ||
new_state = np.reshape(new_state, [1, state_size]) | ||
steps += 1 | ||
if done == True: | ||
reward = infos.reward_values[0] | ||
agent.memory.append((state, action, reward, new_state, done)) | ||
agent.fitting(state, action, reward, new_state, predicted_qvalues) | ||
state = new_state | ||
|
||
if len(agent.memory) > infos.replay_memory and (random.random() < 0.5): | ||
minibatch = random.sample(agent.memory, infos.replay_memory) | ||
for state, action, reward, new_state, done in minibatch: | ||
predicted_qvalues = agent.m1.predict(state) ### change to m2 | ||
action = agent.acting(state) | ||
agent.fitting(state, action, reward, new_state, predicted_qvalues) | ||
epsilon = infos.epsilon | ||
m1 = init_model(state_size, action_size) | ||
m2 = init_model(state_size, action_size) | ||
m2.set_weights(m1.get_weights()) | ||
for episode in range(infos.episodes): | ||
state = env.reset() | ||
state = np.reshape(state, [1, state_size]) | ||
steps = 0 | ||
done = False | ||
|
||
while not done: | ||
predicted_qvalues = m2.predict(state) | ||
action = policy(state, predicted_qvalues[0], epsilon) | ||
new_state, reward, done, _ = env.step(action) | ||
new_state = np.reshape(new_state, [1, state_size]) | ||
steps += 1 | ||
if done == True: | ||
reward = infos.reward_values[0] | ||
memory.append((state, action, reward, new_state, done)) | ||
m1, m2 = fit_model(state, action, reward, new_state, m1, m2, predicted_qvalues) | ||
state = new_state | ||
|
||
if len(memory) > 200 and (random.random() < 0.5): | ||
print(f"*** memory replay for episode:{episode}") | ||
minibatch = random.sample(memory, infos.batch_size) | ||
### check minibatch | ||
for state, action, reward, new_state, done in minibatch: | ||
predicted_qvalues = m1.predict(state) | ||
action = policy(state, predicted_qvalues[0], epsilon) | ||
m1, m2 = fit_model(state, action, reward, new_state, m1, m2, predicted_qvalues) | ||
|
||
agent.update_epsilon() | ||
# print(f'\nepisode = {episode}, total_steps = {steps} and epsilon == {round(epsilon, 3)}') | ||
# if episode % 10 == 0 and episode != 0: | ||
# print(f"evaluation m1 = {agent.evaluate()}") | ||
# agent.m1.set_weights(agent.m1.get_weights()) ### change to m2 | ||
epsilon = epsilon * infos.epsilon_decay | ||
if (epsilon < infos.epislon_min): | ||
epsilon = infos.epislon_min | ||
|
||
print(f'\nepisode = {episode}, total_steps = {steps} and epsilon == {round(epsilon, 3)}') | ||
if episode % 10 == 0 and episode != 0: | ||
print(f"evaluation m1 = {eval(m1)}") | ||
m2.set_weights(m1.get_weights()) | ||
|
||
if episode % 50 == 0 and episode != 0: | ||
agent.m1.save_weights(f'weigths/with_dqn_{episode}.hdf5', agent.m1) | ||
|
||
return agent.m1 | ||
if episode % 50 == 0 and episode != 0: | ||
save(f'outs/with_dqn_{episode}.hdf5', m1) | ||
return m1 | ||
|
||
if __name__ == "__main__": | ||
m1 = learn() | ||
m1 = learn() | ||
episode = sys.argv[1] | ||
m1 = init_model(state_size, action_size) | ||
m1.load_weights("weigths/weights_dqn_550e") | ||
play(m1) |
This file was deleted.
Oops, something went wrong.
Binary file not shown.
Oops, something went wrong.