A simple R package for the Pardot API v3
devtools::install_github("demgenman/paRdot")
Define the connection options that are to be used for all subsequent calls to the Pardot API. This is optional. Note: As of 1 Nov 2018 Pardot API calls should use TLS v1.1 or higher.
# Use SSL/TLS v1.2 for Pardot API calls only
set_curl_options( httr:config(sslversion = 6) )
# Alternatively, use SSL/TLS v1.2 for any curl connection
library(httr)
set_config(config(sslversion = 6))
Authentication
a) using Pardot User Key and API Key:
set_credentials('your-username', 'your-password', 'your-user-key')
b) using Salesforce OAuth:
set_oauth_credentials('your-username', 'your-password', 'pardot-business-unit-id', 'client-id', 'client-secret')
Next, make a paRdot API call.
# Using pardot_client()
df <- pardot_client(object = "prospect", operator = "query",
request_pars="created_after=today", result_format="json", verbose = 0)
# Using wrapper function for pardot_client()
df <- pardot_prospects(created_after = "today")
Wrapper functions for querying objects
The functions below are convenient wrappers for pardot_client().
df <- pardot_account()
df <- pardot_campaigns()
df <- pardot_email()
df <- pardot_email_clicks()
df <- pardot_email_stats()
df <- pardot_email_template()
df <- pardot_forms()
df <- pardot_lifecycle_histories()
df <- pardot_lifecycle_stages()
df <- pardot_list_memberships()
df <- pardot_lists()
df <- pardot_prospect_accounts()
df <- pardot_prospects()
df <- pardot_tag_objects()
df <- pardot_tags()
df <- pardot_users()
df <- pardot_visitor_activities()
df <- pardot_visitors()
df <- pardot_visits()
All functions accept the Pardot API parameters as described on http://developer.pardot.com/.
df <- pardot_prospects(created_after = "20171101,1200", last_activity_never = TRUE)
Data frame from JSON response, with Pardot API call parameters supported:
Use result_format="json" to obtain a data frame with the requested data. Function pardot_client() uses multiple calls to the API if necessary.
df <- pardot_client(object, operator, identifier_field=NULL, identifier=NULL,
request_pars=NULL, result_format="json", verbose=FALSE)
Object is the name of a Pardot object and operator is the operation performed on that object. The table below gives an overview of the allowed combinations.
Refer to the Pardot API documentation for more details.
Identifier_field and identifier are required for operations for using the object, and specify the name and value of the identifier, respectively.
If result_format="json" the function returns a single data frame, using successive API calls with iterative url querystrings to accumulate the results. The returned data frame includes all records selected by the request_pars which should be formatted as a url query string. Iteration uses the API querystring parameter offset. The first call uses no offset. If offset is specified as part of the request_pars querystring that value is used for the first call. Successive calls increment the offset by 200.
Use result_format="list" to get results in a list of lists format. In this case pardot_client() does not make successive API calls to accumulate results.
xml_response <- pardot_client("project", "read", "id", "12345678", result_format="list")
Information about call progress is available using the verbose parameter. 1 displays a progress bar. 2 additionally displays call urls and the data structure returned by the first call.
The paRdot wrapper functions are for querying an object.
XML response with some configuration
Use result_format="xml" to obtain the requested data in parsed XML format returned by xmlNode().
xml_response <- pardot_client(object, operator, identifier_field, identifier, result_format="xml")
Limits
Pardot Professional edition customers have a limit of 25k API calls per day, and Ultimate edition customers have a limit of 100k API calls per day. See the Pardot knowledge base article Using the Pardot API
Pardot also seems to limit the number of results it returns to 100k results at a time for a single type of API call. To retrieve more result use query search criteria parameters like created_after, created_before, id_greater_than and id_less_than in subsequent function calls.
# Retrieve data in two parts
df1 <- pardot_visitor_activities(created_after = "20170101", created_before = "20170102")
df2 <- pardot_visitor_activities(created_after = "20170102", created_before = "20170103")
df <- plyr::rbind.fill(df1, df2)