-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
05dcd9d
commit ec10163
Showing
6 changed files
with
1,193 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,295 @@ | ||
# Based on https://github.com/pytorch/examples/blob/master/dcgan/main.py | ||
import torch | ||
import math | ||
from torch import nn | ||
from core.modules import View, PixelNorm2d | ||
import core.modules | ||
import random | ||
from GAN.modules import EqualizedConv2d | ||
|
||
|
||
def weight_formula(i, idx, speed=2): | ||
if idx > i: | ||
w = max(0, min(1, 1 - abs(i - idx) * speed)) | ||
else: | ||
w = max(0, min(1, speed - abs(i - idx) * speed)) | ||
return w | ||
|
||
|
||
class FirstLayer(nn.Module): | ||
|
||
def __init__(self, latent_dim, size_out, out_channels) -> None: | ||
""" | ||
Args: | ||
latent_dim: Dimension of the latent space | ||
feature_maps: Number of feature maps to use | ||
image_channels: Number of channels of the images from the dataset | ||
""" | ||
super().__init__() | ||
self.size_out = size_out | ||
self.linear = nn.Linear(latent_dim, size_out * size_out * out_channels) | ||
self.out_channels = out_channels | ||
self.bn = nn.Sequential(PixelNorm2d(self.out_channels), nn.LeakyReLU(0.2)) | ||
|
||
def forward(self, noise: torch.Tensor) -> torch.Tensor: | ||
l1 = self.linear(noise.view(noise.shape[0], -1)) | ||
l1_view = l1.view(noise.shape[0], self.out_channels, self.size_out, self.size_out) | ||
return self.bn(l1_view) | ||
|
||
|
||
class DCGANGenerator(nn.Module): | ||
|
||
def __init__(self, latent_dim: int, feature_maps: int, image_channels: int, version: float, size: int, | ||
custom_conv: bool) -> None: | ||
""" | ||
Args: | ||
latent_dim: Dimension of the latent space | ||
feature_maps: Number of feature maps to use | ||
image_channels: Number of channels of the images from the dataset | ||
""" | ||
super().__init__() | ||
self.num_layers = int(math.log2(size)) - 2 | ||
self.version = version | ||
if version == 1: | ||
self.gen = nn.Sequential( | ||
FirstLayer(latent_dim, 4, feature_maps), | ||
self._make_gen_block(feature_maps, feature_maps, custom_conv=custom_conv), # 8x8 | ||
self._make_gen_block(feature_maps, feature_maps // 2, custom_conv=custom_conv), # 16x16 | ||
self._make_gen_block(feature_maps // 2, feature_maps // 4, custom_conv=custom_conv), # 32x32 | ||
self._make_gen_block(feature_maps // 4, feature_maps // 8, scale=1, custom_conv=custom_conv), # 32x32 | ||
self._make_gen_block(feature_maps // 8, image_channels, last_block=True, custom_conv=custom_conv) # 64x64 | ||
) | ||
elif version == 2.1: | ||
gen_layers = [ | ||
FirstLayer(latent_dim, 4, feature_maps), | ||
self._make_gen_block(feature_maps, feature_maps // 2, custom_conv=custom_conv), # 8x8 | ||
self._make_gen_block(feature_maps // 2, feature_maps // 4, custom_conv=custom_conv), # 16x16 | ||
self._make_gen_block(feature_maps // 4, feature_maps // 4, scale=1, custom_conv=custom_conv), | ||
self._make_gen_block(feature_maps // 4, feature_maps // 8, custom_conv=custom_conv), # 32x32 | ||
self._make_gen_block(feature_maps // 8, feature_maps // 8, scale=1, custom_conv=custom_conv), | ||
self._make_gen_block(feature_maps // 8, image_channels, last_block=True, custom_conv=custom_conv) # 64x64 | ||
] | ||
self.gen = nn.Sequential(*gen_layers) | ||
elif version == 3: | ||
gen_layers = [nn.Sequential(FirstLayer(latent_dim, 4, feature_maps), | ||
self._make_gen_block(feature_maps, feature_maps, scale=1, custom_conv=custom_conv))] | ||
out_layers = [self._make_gen_block(feature_maps, image_channels, scale=1, last_block=True, custom_conv=custom_conv)] | ||
num_features = feature_maps | ||
for layer in range(self.num_layers): | ||
out_features = num_features if layer <= 3 else num_features // 2 | ||
gen_layers += [nn.Sequential( | ||
self._make_gen_block(num_features, out_features, custom_conv=custom_conv), | ||
self._make_gen_block(out_features, out_features, scale=1, custom_conv=custom_conv))] | ||
out_layers += [ | ||
self._make_gen_block(out_features, image_channels, scale=1, last_block=True, custom_conv=custom_conv) | ||
] | ||
num_features = out_features | ||
self.gen = nn.ModuleList(gen_layers) | ||
self.out_layers = nn.ModuleList(out_layers) | ||
else: | ||
raise NotImplementedError | ||
|
||
@staticmethod | ||
def _make_gen_block( | ||
in_channels: int, | ||
out_channels: int, | ||
kernel_size: int = 3, | ||
scale: int = 2, | ||
bias: bool = True, | ||
last_block: bool = False, | ||
use_tanh=False, | ||
custom_conv=False | ||
) -> nn.Sequential: | ||
if custom_conv: | ||
conv = EqualizedConv2d | ||
if not bias: | ||
print('_make_gen_block: setting bias to True') | ||
bias = True | ||
else: | ||
conv = nn.Conv2d | ||
if use_tanh: | ||
last_act = nn.Tanh() | ||
else: | ||
last_act = nn.Identity() | ||
if scale > 1: | ||
upscale = nn.Upsample(scale_factor=scale) | ||
else: | ||
upscale = nn.Identity() | ||
if not last_block: | ||
gen_block = nn.Sequential( | ||
upscale, | ||
conv(in_channels, out_channels, kernel_size, 1, kernel_size // 2, bias=bias), | ||
PixelNorm2d(out_channels), | ||
nn.LeakyReLU(0.2) | ||
) | ||
else: | ||
gen_block = nn.Sequential( | ||
upscale, | ||
conv(in_channels, out_channels, kernel_size, 1, kernel_size // 2, bias=bias), | ||
last_act | ||
) | ||
|
||
return gen_block | ||
|
||
def forward(self, noise: torch.Tensor, idx: float): | ||
if self.version < 3: | ||
return torch.clamp(self.gen(noise), -1, 1) | ||
else: | ||
out = None | ||
layer = noise | ||
assert self.num_layers == len(self.gen) - 1 | ||
lower_idx = min(self.num_layers, math.floor(idx)) | ||
higher_idx = min(self.num_layers, math.ceil(idx)) | ||
debug = random.random() < 0.002 and False | ||
sum_w = 0.0 | ||
for l in range(higher_idx + 1): | ||
if debug: | ||
print(l) | ||
layer = self.gen[l](layer) | ||
if lower_idx <= l <= higher_idx: | ||
w = weight_formula(l, idx) | ||
sum_w += w | ||
if out is None: | ||
out = w * self.out_layers[l](layer) | ||
else: | ||
new_out = self.out_layers[l](layer) | ||
out = torch.nn.functional.interpolate(out, scale_factor=2, mode='nearest') + w * new_out | ||
assert sum_w > 0 | ||
return out / sum_w | ||
|
||
|
||
class DCGANDiscriminator(nn.Module): | ||
|
||
def __init__(self, feature_maps: int, image_channels: int, version: float, size: int, use_avg: bool, | ||
norm: str, use_std: bool, custom_conv: bool) -> None: | ||
""" | ||
Args: | ||
feature_maps: Number of feature maps to use | ||
image_channels: Number of channels of the images from the dataset | ||
""" | ||
super().__init__() | ||
self.num_layers = int(math.log2(size)) - 2 | ||
self.version = version | ||
self.use_std = use_std | ||
if self.version < 3: | ||
num_features = feature_maps // (2 ** (self.num_layers - 1)) | ||
self.disc = [ | ||
self._make_disc_block(image_channels, num_features, use_avg=use_avg, norm=norm, custom_conv=custom_conv)] | ||
for l in range(self.num_layers - 1): | ||
# self.disc.append(self._make_disc_block(num_features, num_features, use_avg=use_avg, stride=1,norm=norm)) | ||
self.disc.append( | ||
self._make_disc_block(num_features, num_features * 2, use_avg=use_avg, norm=norm, custom_conv=custom_conv)) | ||
num_features *= 2 | ||
assert num_features == feature_maps | ||
self.disc.append(self._make_disc_block(num_features, 1, kernel_size=4, | ||
stride=1, padding=0, last_block=True, custom_conv=custom_conv)) | ||
|
||
self.disc = nn.Sequential(*self.disc) | ||
else: | ||
self.avg2x = nn.AvgPool2d(2) | ||
if use_std: | ||
chan_std = 1 | ||
else: | ||
chan_std = 0 | ||
num_features = feature_maps # // (2 ** (self.num_layers - 3)) | ||
self.disc = [] | ||
self.from_rgb = [self._make_disc_block(image_channels, feature_maps, stride=1, use_avg=use_avg, norm=norm, | ||
custom_conv=custom_conv)] | ||
|
||
self.out = nn.Sequential( | ||
self._make_disc_block(feature_maps + chan_std, feature_maps, stride=1, use_avg=use_avg, norm=norm, | ||
custom_conv=custom_conv), | ||
self._make_disc_block(feature_maps, 1, kernel_size=4, stride=1, padding=0, last_block=True, | ||
custom_conv=custom_conv)) | ||
|
||
for num_l in range(self.num_layers): | ||
num_features //= 2 | ||
self.from_rgb.append(self._make_disc_block(image_channels, num_features, stride=1, use_avg=use_avg, norm=norm, | ||
custom_conv=custom_conv)) | ||
single_disc = [] | ||
single_disc.append(self._make_disc_block(num_features, num_features, stride=1, use_avg=use_avg, norm=norm, | ||
custom_conv=custom_conv)) | ||
single_disc.append( | ||
self._make_disc_block(num_features, num_features * 2, use_avg=use_avg, norm=norm, custom_conv=custom_conv)) | ||
|
||
self.disc.append(nn.Sequential(*single_disc)) | ||
|
||
self.disc = nn.ModuleList(self.disc) | ||
self.from_rgb = nn.ModuleList(self.from_rgb) | ||
|
||
@staticmethod | ||
def _make_disc_block( | ||
in_channels: int, | ||
out_channels: int, | ||
kernel_size: int = 3, | ||
stride: int = 2, | ||
padding: int = 1, | ||
bias: bool = True, | ||
last_block: bool = False, | ||
use_avg=False, | ||
custom_conv=False, | ||
norm="" | ||
) -> nn.Sequential: | ||
if use_avg: | ||
stride_conv = 1 | ||
if stride > 1: | ||
downscale = nn.AvgPool2d(stride) | ||
else: | ||
downscale = nn.Identity() | ||
else: | ||
downscale = nn.Identity() | ||
stride_conv = stride | ||
if custom_conv: | ||
conv = EqualizedConv2d | ||
if not bias: | ||
print('_make_gen_block: setting bias to True') | ||
bias = True | ||
else: | ||
conv = nn.Conv2d | ||
if not last_block: | ||
if hasattr(nn, norm): | ||
norm_layer = getattr(nn, norm) | ||
else: | ||
norm_layer = getattr(core.modules, norm) | ||
disc_block = nn.Sequential( | ||
conv(in_channels, out_channels, kernel_size, stride_conv, padding, bias=bias), | ||
norm_layer(out_channels), | ||
nn.LeakyReLU(0.2), | ||
downscale | ||
) | ||
else: | ||
disc_block = nn.Sequential( | ||
conv(in_channels, out_channels, kernel_size, stride, padding, bias=bias) # , | ||
# nn.Sigmoid(), | ||
) | ||
|
||
return disc_block | ||
|
||
def forward(self, x, idx): | ||
if self.version < 3: | ||
return self.disc(x).view(x.shape[0], 1) | ||
else: | ||
lower_idx = min(self.num_layers, math.floor(idx)) | ||
higher_idx = min(self.num_layers, math.ceil(idx)) | ||
w1 = weight_formula(lower_idx, idx) | ||
w2 = weight_formula(higher_idx, idx) | ||
sum_w = w1 + w2 | ||
w1 /= sum_w | ||
w2 /= sum_w | ||
if random.random() < 0.001: | ||
print('idx', lower_idx, idx, higher_idx, 'w', w1, w2) | ||
if lower_idx == higher_idx: | ||
o = self.from_rgb[lower_idx](x) | ||
# print(o.shape) | ||
if higher_idx > 0: | ||
o = self.disc[higher_idx - 1](o) | ||
else: | ||
o = w1 * self.from_rgb[lower_idx](self.avg2x(x)) + w2 * self.disc[higher_idx - 1](self.from_rgb[higher_idx](x)) | ||
# print(lower_idx, higher_idx, o.shape) | ||
for l in range(higher_idx - 2, -1, -1): | ||
o = self.disc[l](o) | ||
# print(lower_idx,higher_idx,o.shape) | ||
if self.use_std: | ||
o = core.modules.miniBatchStdDev(o) | ||
o = self.out(o) | ||
return o.view(x.shape[0], 1) |
Oops, something went wrong.