Skip to content

datthan1576/ml-phystech

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lesson 1: Introduction to Machine Learning

  • Using Sklearn for Iris dataset.
  • Binary classification, multiclass classification.

Lesson 2: Linear classifier and stochastic gradient

  • Stochastic gradient in practice.
  • Maximum Likelihood and Regularization L1,L2.
  • Find optimize regularization using LOO.

Lesson 3: Neural Networks: Gradient Optimization Techniques

  • Autograd.
  • MLP for MNIST.
  • Tuning hyperparameters for MLP.

Lesson 4: Metric classification and regression methods

  • kNN, kernel-kNN, Parzen window method, potential function method.
  • Reference element selection, STOLP, Nadarai Watson formula.

Lesson 5: Support vector machine

  • SVM , kernel-SVM for classification, regression.
  • SVM feature.

Lesson 6: Multidimensional Linear Regression

  • Multidimendional Linear Regression, SVD, regularization for MLR using SVD.
  • Dependence of the approximation quality on the condition number.
  • PCA on MNIST.
  • PCA for images.

Lesson 7: Nonlinear Regression

  • Non-linear regression example.
  • Compare gradient descent, Newton-Raphson and Newton-Gauss.
  • Generalized linear models: optimal sample size.
  • Loss function for the problem of finding close sentences.
  • Convergence visualization of the Newton Raphson method and the stochastic gradient.

Lesson 8: Model Selection Criteria and Feature Selection Methods

  • Model quality assessment: external and internal criteria.
  • Feature selection: exhaustive search, Add algorithm, Add-Del algorithm.
  • Precision,Recall.
  • Example of information retrieval task.

Lesson 9: Logical classification methods

  • Logical classifier implementation.
  • Informative criteria.
  • Decision list, simple implementation.
  • Decision tree.
  • Random forest.

Lesson 10: Search for association rules

  • Statement of the problem of association rules.
  • Synthetic example.
  • Example of real data from Kaggle.
  • Apriori algorithm.
  • FP-growth algorithm.
  • Generalization for real data.
  • Generalized association rules.

Lesson 11: Linear Ensembles

  • DummyEnsemble.
  • AdaBoost.
  • Gradient boosting, XGBoost.
  • An example of real data from kaggle.
  • RandomForest.
  • Mixture Of Expert.

Lesson 12: Advanced Ensembling Techniques

  • ComBoost.
  • Gradient Boosting.
  • XGBoost.
  • CatBoost.

Lesson 13: Bayesian theory of classification

  • Maximum Likelihood Principle: Visualization.
  • Density reconstruction from empirical data.
  • Using LOO to select the window width.
  • Naive Bayes classifier.

Lesson 14: Clustering and semi-supervised learning

  • Clustering examples.
  • K-means.
  • DBSCAN.
  • Hierarchical clustering.
  • Semi-supervised learning.
  • Self-training, 1970.
  • Unlabeled data in deep learning.

Lesson 15: Deep Neural Networks

  • CNN, RNN, Tensorboard, Transfer Learning, Interpretability of NN.

Lesson 16: AutoEncoder,GAN

  • Autoencoder, Linear Autoencoder, Autoencoder using CNN, Variational autoencoder.
  • Transfer learning from a pre-trained model.
  • Generative adversarial networks.

Lesson 17: Tokenization,Word2Vec(Fasttext)

  • An example of classifying tweets.
  • Text tokenization.
  • Word2Vec (based on the FastText model).
  • FastText model (compressed to emb-dim=10 for lightness).
  • Problems for unsupervised learning of vectorization models.

Lesson 18: Attention.Transformer

  • Attention model RNN.
  • Transformer.
  • T2T translator.
  • BPE tokenization.
  • BERT.
  • LaBSE.

Lesson 19: Modeling

  • LDA.
  • PLSA(bigartm).

Lesson 20: Homework

Lesson 21: Learning to rank

  • Basic concept.
  • An example of a ranking problem.
  • An example of a recommender system.
  • Training a search engine based on pyserini.

Lesson 22: Recommender Systems

  • Constant model.
  • Correlation system.
  • SLIM.
  • SVD.

Lesson 23: Time Series Analysis

  • Autoregression model.
  • Exponential smoothing.
  • Cluster analysis of time series.

Lesson 24: Online Learning

Lesson 25: Reinforcement Learning

  • Stationary multi-armed bandit.
  • Non-stationary multi-armed bandit.
  • Swim problem.

Lesson 26: Active Learning

  • Active learning with a random additive element.
  • Active learning with the addition of the element with the maximum variance.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published