Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fixed r model metric calculation #65

Merged
merged 1 commit into from
Jul 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -435,7 +435,3 @@ def forecast(input_data, url=endpoint_url, databricks_token=token):

# Delete the serving endpoint
func_delete_model_serving_endpoint(model_serving_endpoint_name)

# COMMAND ----------


4 changes: 0 additions & 4 deletions examples/foundation_daily.py
Original file line number Diff line number Diff line change
Expand Up @@ -195,7 +195,3 @@ def transform_group(df):
# COMMAND ----------

display(spark.sql(f"delete from {catalog}.{db}.daily_scoring_output"))

# COMMAND ----------


4 changes: 0 additions & 4 deletions examples/local_univariate_daily.py
Original file line number Diff line number Diff line change
Expand Up @@ -234,7 +234,3 @@ def transform_group(df):
# COMMAND ----------

display(spark.sql(f"delete from {catalog}.{db}.daily_scoring_output"))

# COMMAND ----------


2 changes: 1 addition & 1 deletion examples/local_univariate_external_regressors_daily.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@

catalog = "mmf" # Name of the catalog we use to manage our assets
db = "rossmann" # Name of the schema we use to manage our assets (e.g. datasets)
volume = "csv" # Name of the volume where you have your rossmann dataset csv sotred
volume = "csv" # Name of the volume where you have your rossmann dataset csv stored
user = spark.sql('select current_user() as user').collect()[0]['user'] # User email address

# COMMAND ----------
Expand Down
3 changes: 2 additions & 1 deletion mmf_sa/Forecaster.py
Original file line number Diff line number Diff line change
Expand Up @@ -222,11 +222,12 @@ def evaluate_local_model(self, model_conf):
evaluate_one_local_model_fn = functools.partial(
Forecaster.evaluate_one_local_model, model=model
)

res_sdf = (
src_df.groupby(self.conf["group_id"])
.applyInPandas(evaluate_one_local_model_fn, schema=output_schema)
)

# Write evaluation result to a delta table
if self.conf.get("evaluation_output", None) is not None:
(
Expand Down
28 changes: 8 additions & 20 deletions mmf_sa/models/abstract_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -137,37 +137,25 @@ def calculate_metrics(
Returns: metrics (Dict[str, Union[str, float, bytes]]): A dictionary specifying the metrics.
"""
pred_df, model_fitted = self.predict(hist_df, val_df)

actual = val_df[self.params["target"]].to_numpy()
forecast = pred_df[self.params["target"]].to_numpy()

if self.params["metric"] == "smape":
smape = MeanAbsolutePercentageError(symmetric=True)
metric_value = smape(
val_df[self.params["target"]],
pred_df[self.params["target"]],
)
metric_value = smape(actual, forecast)
elif self.params["metric"] == "mape":
mape = MeanAbsolutePercentageError(symmetric=False)
metric_value = mape(
val_df[self.params["target"]],
pred_df[self.params["target"]],
)
metric_value = mape(actual, forecast)
elif self.params["metric"] == "mae":
mae = MeanAbsoluteError()
metric_value = mae(
val_df[self.params["target"]],
pred_df[self.params["target"]],
)
metric_value = mae(actual, forecast)
elif self.params["metric"] == "mse":
mse = MeanSquaredError(square_root=False)
metric_value = mse(
val_df[self.params["target"]],
pred_df[self.params["target"]],
)
metric_value = mse(actual, forecast)
elif self.params["metric"] == "rmse":
rmse = MeanSquaredError(square_root=True)
metric_value = rmse(
val_df[self.params["target"]],
pred_df[self.params["target"]],
)
metric_value = rmse(actual, forecast)
else:
raise Exception(f"Metric {self.params['metric']} not supported!")

Expand Down
Loading